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In this paper, we present and evaluate a novel Bayesian regime-switching zero-inflatedmultilevel Pois-
son (RS-ZIMLP) regression model for forecasting alcohol use dynamics. The model partitions individuals’
data into two phases, known as regimes, with: (1) a zero-inflation regime that is used to accommodate high
instances of zeros (non-drinking) and (2) a multilevel Poisson regression regime in which variations in
individuals’ log-transformed average rates of alcohol use are captured by means of an autoregressive pro-
cess with exogenous predictors and a person-specific intercept. The times at which individuals are in each
regime are unknown, but may be estimated from the data. We assume that the regime indicator follows
a first-order Markov process as related to exogenous predictors of interest. The forecast performance of
the proposed model was evaluated using a Monte Carlo simulation study and further demonstrated using
substance use and spatial covariate data from the Colorado Online Twin Study (CoTwins). Results showed
that the proposedmodel yielded better forecast performance compared to a baseline model which predicted
all cases as non-drinking and a reduced ZIMLP model without the RS structure, as indicated by higher
AUC (the area under the receiver operating characteristic (ROC) curve) scores, and lower mean absolute
errors (MAEs) and root-mean-square errors (RMSEs). The improvements in forecast performance were
even more pronounced when we limited the comparisons to participants who showed at least one instance
of transition to drinking.
Keywords: Bayesian zero-inflated Poissonmodel, forecast, intensive longitudinal data, regime-switching,
spatial data, substance use.

1. Introduction

Intensive longitudinal methods have become increasingly popular in the study of substance
use (Wray et al. 2014, Litt et al. 1998), where more nuanced changes in substance use dynamics
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can now be investigated based on intensively collected data. Recent advances in data collection
tools such as increasing access to and use of wearable sensors to collect ambulatory assessments
(Wilhelmet al. 2012,Russell andOdgers 2020,Russell et al. 2017) have led to renewed interest and
growth in modeling innovations for studying change processes in social and behavioral sciences
(Chow 2019, Lu et al. 2015, Li et al. 2019). When it comes to forecasting, many machine learning
(ML) models offer excellent forecasting results in large-sample cross-sectional or longitudinal
panel data with a limited number of measurement occasions (see, e.g., Yarkoni andWestfall 2017,
Orrù et al. 2020), but these methods may be limited in predicting moment-to-moment time depen-
dencies in the data. Even though advancedMLmethods such as recurrent neural networks (RNNs)
exist and can be used to account for linear, nonlinear, and nonparametric temporal relationships in
the data, the statistical properties of these (often highly over-parameterized) methods are not well
understood, and decisions on model structures and tuning parameters are data-driven and can be
arbitrary at times. As such, mappings to theories can be prohibitive or even impossible (Sánchez-
Sánchez et al. 2019). Furthermore, myriad flexible, often nonparametric tools also exist in the
statistical and econometric literature for forecasting future values of time-series data, particularly
those with very small units of analysis (e.g., n = 1 or < 10; Harvey et al. 2001, Helske 2017,
Shen 2010, West and Harrison 1997). However, these methods often do not integrate modeling
features that can simultaneously capture characteristics of intraindividual changes and interindi-
vidual differences, particularly when intermittent transitions through distinct patterns of dynamics
(e.g., different phases of a change process) are observed. Other issues that warrant close attention
include the implications of forecasting in the presence of missingness, and the importance of
quantifying the uncertainty around prediction results in making decisions.

We propose in this article a novel regime-switching zero-inflated multilevel Poisson (RS-
ZIMLP) regression model with autoregressive (AR) relations to forecast alcohol use in early
adolescence. The proposed RS-ZIMLP model uses a mixture of a Poisson process and a degen-
erate point mass at zero (Lambert 1992) to capture the zero inflation (ZI; i.e., prominence of
non-drinking responses) in early adolescent drinking data and associated dynamics. Such high
instances of zero responses, if unaccounted for, are known to yield biased estimates and inferential
results (Chow et al. 2015, Lambert 1992, Lu et al. 2019,Maisto et al. 2017). Compared to previous
longitudinal extensions of the zero-inflated Poisson (ZIP) regression model, which already allow
for over-time dependencies (e.g., AR relations) in the Poisson process (e.g., Hall 2000, Yau and
Lee 2001,Min andAgresti 2005, Lee et al. 2006, Neelon et al. 2010, Berry andWest 2020; models
with AR relations: Lee et al. 2006, Maisto et al. 2017), the proposed model is unique in the inclu-
sion of a first-order Markov process to capture within-individual transitions between the ZI and
Poisson processes with AR relations. Consistent with conventions in the econometric literature,
such transitions between two distinct patterns of data are referred to as regime switches (Kim et al.
1999). Thus, whereas other ZIP models with AR relations typically assume that the probability
of being in a particular regime is linked instantaneously to other person- and/or time-specific
covariates, the first-order Markov process instills some over-time regularity in each individual’s
probability of being in a regime as dependent on the individual’s previous regime. This regularity
may still change as a function of other person- and/or time-varying covariates, but in the absence
of other covariate information or at zero values of mean-centered covariates, its inclusion allows
the “prototypical” individuals to transition between regimes over time, as opposed to staying
statically within a regime. In the context of our motivating example, this means that adolescents
who engage in drinking and other substance use may occasionally switch to prolonged periods of
sustained abstinence. Conversely, those who usually abstain from alcohol use may also transition
abruptly to the drinking regime. Forecasting the moments and possible determinants of such tran-
sitions may allow identification and prevention of escalation to subsequent problematic substance
use (Howard et al. 2015, Russell et al. 2017).
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The proposed model also extends earlier work on regime-switching (RS) dynamic models
with ZI (Chow et al. 2015, Lu et al. 2019) to the framework of multilevel ZIP by incorporating a
person-specific intercept into the Poisson process with AR relations. Finally, another key innova-
tion of the present article resides in the use of spatial covariates derived from global positioning
system (GPS) data in our motivating empirical example to forecast within-person variations in
alcohol use while in the drinking regime, as well as transitions between the ZI and drinking
regime1. The proposed model is presented and evaluated in a Bayesian framework, which pro-
vides more modeling flexibility, and allows for quantification of the uncertainty associated with
the estimation and forecast results.

The rest of the paper is organized as follows: We first introduce the empirical data example
that motivates our development and use of the proposed model for forecasting purposes. Then, we
review the standard ZIP model and introduce the proposed RS-ZIMLP model. This is followed
by the descriptions of Bayesian estimation and forecast details. The estimation and forecast
performance (including forecast uncertainty) are then evaluated using a simulation study and an
empirical illustration based on our empirical data. Finally,we discuss the results and the limitations
of the proposed approach and highlight some future directions.

2. Motivating Example

Themotivating examplewas inspired by theColoradoOnline Twin Study (CoTwins) inwhich
participants were asked to report alcohol use weekly and carry GPS-enabled smartphones to track
their locations over two years. Figure 1 shows the trajectories of alcohol use for four randomly
selected participants. The four trajectories represent different patterns of alcohol use and amounts
of missingness across participants. For instance, the trajectory in the upper-left panel displays
frequent transitions between drinking and ZI regimes, whereas the trajectory in the upper-right
panel displays an extensive period of abstinence and abrupt transitions to heavy drinking. The
two trajectories in the two lower panels display overall abstinence and occasional alcohol use.
Compared to previous studies involving individuals with alcohol use disorders (e.g., Chow et
al. 2015, Maisto et al. 2017), there was, as expected, an even greater extent of inflation in zero
responses. Even in this relatively young sample with ages ranging from 14 to 17 at the time
of enrollment, there were already some transitions between ZI and drinking regimes in varying
amounts, as well as considerable individual differences in such dynamics. Our proposed model
wasmotivated by our goal to simultaneously address the ZI and capture the underlyingmechanism
of transitioning between ZI and drinking regimes aswell as gradual changes in the drinking regime
over time.

In the following part, we will start with the standard ZIP model proposed by Lambert (1992)
and then describe our proposed RS-ZIMLP model. The ZIP model assumes that the count data
are from a mixture of a Poisson distribution and a degenerate distribution at zero. Specifically,
the responses of N individuals, Y1, . . . ,YN , are independent and

Yi =
{
0, with probability 1 − pi
Poisson(λi ), with probability pi

(1)

where themean of the Poisson distribution, λi (i = 1, . . . , N ), and the probability, pi , aremodeled
by:

log(λi ) = xTi β (2)

1Note that in this article, the “ZI regime” and “drinking regime” were used in the context of alcohol use to correspond
to the ZI and Poisson process in the ZIP model, respectively.
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Figure 1.
The trajectories of alcohol use for four randomly selected participants. The weekly alcohol use was measured as the total
number of drinks consumed in the past week (see how alcohol use values were coded in the Data Descriptions subsection).

logit(pi ) = zTi α (3)

where xi and zi are person-specific covariates with corresponding coefficients β and α, respec-
tively.

The model presented above can be extended to allow for repeated measures of the response
variable. Let Yi,t represent the t th (t = 1, . . . , Ti ) observation of the i th person and

Yi,t =
{
0, with probability 1 − pi,t
Poisson(λi,t ), with probability pi,t

(4)

where λi,t and pi,t are now predicted by person- and time-specific covariates, xi,t and zi,t , respec-
tively, as defined below.

log(λi,t ) = xTi,tβ (5)

logit(pi,t ) = zTi,tα (6)

In our proposed RS-ZIMLP model, we extend Eq. 5 to account for autocorrelation in the
time-series data. Specifically, ηi,t , defined as ηi,t = log(λi,t ), is assumed to follow a multilevel
AR process of lag order 1 with exogenous predictors, formulated as

ηi,t =φ0,i + φ1(ηi,t−1 − φ0,i ) + xTi,t−1β + εi,t ,
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εi,t ∼ N (0, σ 2
ε ); ηi,1 ∼ N (μη1 , σ

2
η1

) (7)

φ0,i =gTi γ + vi , vi ∼ N (0, σ 2
v ). (8)

The level-1 model as defined in Eq. 7 is an AR-X model, where the AR parameter, φ1, controls
the dependence between the process’s current (e.g., ηi,t ) and previous (e.g., ηi,t−1) values. It
is also referred to as the “inertia” of a dynamic process in the literature on affective dynamics
(Kuppens et al. 2010). Specifically, the AR(1) process is stationary if and only if |φ1| < 1
(Hamilton 1994, Lütkepohl 2005), and within such range, a high positive value of φ1 reflects a
construct’s resistance to change (i.e., inertia). Person- and time-specific covariates are collected in
xi,t−1, which is a nx -dimensional vector, with corresponding coefficients β. The person-specific
intercept, φ0,i , reflects individual i’s baseline around which the process of interest (i.e., the log
means of the Poisson distribution) fluctuates when all xi,t−1 equal 0. The innovation term (also
called process noise) is denoted as εi,t , which reflects unmeasured sources that affect the dynamics
of ηi,t , following a normal distribution with zero mean and variance σ 2

ε . The initial condition,
ηi,1, follows a normal distribution with a mean of μη1 and a variance of σ 2

η1
. The level-2 model is

defined in Eq. 8. In Eq. 8, the person-specific intercept is predicted by person-specific covariates
in the ng-dimensional vector, gi , with the first entry being unity to define an intercept term and γ

being the corresponding regression coefficients. Parameter vi is the random effect, which follows
a normal distribution with zero mean and variance σ 2

v , and represents individual i’s deviations in
the values of φ0,i not accounted for by the exogenous variables, gi .

The proposed model also extends Eq. 6 to incorporate the time dependency in switches
between the ZI and Poisson processes by specifying the probability of being in a certain regime
to be dependent on the previous regime. That is, a first-order Markov transition model with
multinomial logistic regression is used as:

prs,i,t = P(Si,t = r |Si,t−1 = s) = exp(zTi,t−1αrs)

exp(zTi,t−1α0s) + exp(zTi,t−1α1s)
, (9)

with the probability of the initial regime at time 1 specified as:

p1,i,1 = P(Si,1 = 1) = exp(hTi π)

1 + exp(hTi π)
, (10)

where Si,t is a latent (i.e., unknown) person- and time-specific regime indicator; r and s are
indices for the regime at time t and t − 1, which take on the value of 0 or 1, corresponding to
the ZI and Poisson process, respectively. The RS model is defined in Eq. 9, where the log-odds
of RS dependencies are predicted by person- and time-specific covariates in the nz-dimensional
vector, zi,t−1, with the first entry being unity to define an intercept term and αrs being the
corresponding regression coefficients. Note that for identification purposes, one of the two terms
in the denominator of Eq. 9 has to be designated as the reference level. For instance, in the present
study, we set staying in the same regime as the reference level by fixing all elements in α00 and
α11 to 0, given that exploring determinants that help predict transitions between regimes are of
more interest to us. Initial regime probabilities are defined in Eq. 10, where the log-odds of being
in regime 1 are predicted by person-specific covariates in the nh-dimensional vector, hi , with
the first entry being unity to define an intercept term and π being the corresponding regression
coefficients. Under situations with high probabilities of staying within the same regimes, these
initial regimes can play a non-trivial role in characterizing the overall probabilities of being in a
certain regime.
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Following these model specifications, conditional on the value of the previous regime,

Yi,t |Si,t−1 = s =
{
0, with probability 1 − p1s,i,t
Poisson(λi,t ), with probability p1s,i,t

(11)

and

Yi,1 =
{
0, with probability 1 − p1,i,1
Poisson(λi,1), with probability p1,i,1

(12)

where λi,t , p1s,i,t , λi,1 and p1,i,1 follow the specifications in Eqs. 7–10. Accordingly, conditional
on Si,t−1, the probability distribution of Yi,t can be written as:

P(Yi,t = y|Si,t−1 = s) =
⎧⎨
⎩

(1 − p1s,i,t ) + p1s,i,t e−λi,t , y = 0

p1s,i,t
λ
y
i,t e

−λi,t

y! , y > 0
(13)

Finally, missingness may occur in both dependent variables and covariates. The missingness
in dependent variables can be automatically imputed based on the model specified above, which
is analogous to a Bayesian full-information likelihood approach and is known to work adequately
under specific missing data mechanisms (e.g., missing at random (MAR); Little and Rubin 1987).
However, to handle missingness in covariates, it is necessary to specify models for covariates. In
the present study, we assumed an AR(1) process for each person- and time-specific covariate in
xi,t and zi,t , such that

x j,i,t = φx j x j,i,t−1 + ζx j,i,t , ζx j,i,t ∼ N (0, σ 2
x j ); x j,i,1 ∼ N (μx1 , σ

2
x1)

z j,i,t = φz j z j,i,t−1 + ζz j,i,t , ζz j,i,t ∼ N (0, σ 2
z j ); z j,i,1 ∼ N (μz1 , σ

2
z1) (14)

where x j,i,t and z j,i,t are the j th covariates for person i at time t in Eqs. 7 and 9, respectively;
φx j and φz j denote the AR parameters; and ζx j,i,t and ζz j,i,t are process noises following a normal
distribution with a zero mean and variance of σ 2

x j and σ 2
z j , respectively. Note that all covariates

are assumed to be scaled within-person and across time points to zero mean and unit variance in
this study, therefore no intercept parameters are included in this part of the model. In addition, no
cross-regressions between covariates were allowed for reasons of parsimony.

3. Bayesian Estimation and Forecast

In this section, we first discuss the Bayesian modeling framework for the proposed RS-
ZIMLP model, including prior probability distribution specifications, followed by descriptions of
the general estimation procedures. We then discuss how forecast performance is evaluated in the
proposed Bayesian framework using six performance measures.
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3.1. Modeling Framework

Suppose that Y∗
i,t = {Yi,t , xi,t , zi,t , gi , hi } stores the dependent variable and covariates for

individual i at time t ; ω is a collection of model parameters. Then, conditional on the value of Si,t
and Y∗

i,t−1, the probability distribution function of Y∗
i,t can be written as:

f (Y∗
i,t |Si,t ,Y∗

i,t−1) =
∫

ω

∫
ηi,t

∫
ηi,t−1

∫
φ0,i

f (Y∗
i,t |Si,t ,Y∗

i,t−1, ηi,t ,ω)

f (ηi,t |ηi,t−1, xi,t−1, φ0,i ,ω) f (ηi,t−1|Yi,t−1, φ0,i ,ω) f (φ0,i |gi ,ω)

f (ω|Y∗
i,t−1)dφ0,i dηi,t−1dηi,t dω

(15)

Instead of solving the above high-dimensional integral analytically, we implement model fitting in
a Bayesian framework using Markov chain Monte Carlo (MCMC) methods to perform numerical
integration. In this section, we focus on the Poisson process (i.e., when Si,t = 1), while the
distribution of Si,t will be discussed in the Measures of Forecast Performance section.

First, f (ηi,t |ηi,t−1, xi,t−1, φ0,i ,ω) and f (φ0,i |gi ,ω) jointly represent the multilevel AR-X
model for ηi,t as presented in Eqs. 7 and 8. Second, f (Y∗

i,t |Si,t ,Y∗
i,t−1, ηi,t ,ω) represents the

joint model for the dependent variable and time-varying covariates, which is specified as:

f (Y∗
i,t |Si,t ,Y∗

i,t−1, ηi,t ,ω) = P(Yi,t = y|Si,t , ηi,t ) f (xi,t |xi,t−1,ω) f (zi,t |zi,t−1,ω) (16)

where P(Yi,t = y|Si,t , ηi,t ) represents the model for the dependent variable as presented in
Eqs. 11–12, and f (xi,t |xi,t−1,ω) and f (zi,t |zi,t−1,ω) represent models for covariates as pre-
sented in Eq. 14.

3.2. Prior Specifications

In a Bayesian model, prior probability distributions need to be specified for all unknown
model parameters—including parameters in the Poisson and ZI component of the model and
models for covariates. Specifically, we assigned standard normal distributions (i.e., N (0, 1)) to all
AR parameters (i.e., φ1 in Eq. 7, φx j and φz j in Eq. 14), where the variance of the prior distribution
was set to a relatively small value (i.e., 1) given the aforementioned permissible range of the AR
coefficient for a stationary AR(1) process. In terms of regression coefficients (i.e., β in Eq. 7, γ in
Eq. 8, α01 and α10 in Eq. 9, π in Eq. 10), we assigned normal distributions with zero means and
variances of 100 (i.e., N (0, 100)), which were relatively diffuse priors. Note that parameters in
α00 and α11 were fixed to 0 due to the reason described above, so no priors needed to be specified
for these parameters. The inverse-Gamma distributions, IG(0.001, 0.001), were assigned to all
variance parameters (i.e., σ 2

ε in Eq. 7, σ 2
v in Eq. 8, σ 2

x j and σ 2
z j in Eq. 14). The IG distributions

with relatively small shape and rate parameters (e.g., 0.001) would yield positive values with a
relatively large range and thus can be regarded as noninformative priors. Note that these priors
are conjugate in the sense that the conditional posterior distributions and prior distributions are
in the same family, and they were selected mainly for simplicity and computational efficiency
reasons. Lastly, in terms of initial conditions in AR processes defined in Eqs. 7 and 14—ηi,1,
x j,i,1, and z j,i,1, we fixed their distributions to N (0, 100). Generally speaking, these prior and
initial condition specifications would not introduce much information into the estimation process
and were used in our simulation study. However, in the empirical illustration, we assigned weakly
informative priors to certain parameters based on the expected range of the data (see descriptions
in the Empirical Study section).
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3.3. MCMC Estimation Procedures

Wefit the proposedmodel using the defaultMCMCalgorithms in the statistical software “Just
Another Gibbs Sampler” (JAGS; Plummer et al. 2003). These MCMC algorithms are designed to
sample representative values from the posterior distribution.More specifically, they perform itera-
tive sampling by drawing samples from approximate conditional distributions for each parameter,
and the approximation to the parameters’ true posterior distributions improves as the number of
samples increases. With complex multiple-parameter models, JAGS uses slice sampling (Neal
2003) in a Gibbs-sampling scheme (Geman and Geman 1984) to sample from the parameters’
posteriors, allowing for flexibly in sampling from distributions with arbitrary shapes. We check
the sampling quality by computing two diagnostic statistics (Gelman et al. 2013): (1) the effective
sample size (ESS), which describes how many posterior draws in the MCMC procedure can be
regarded as independent, and (2) R̂, which describes the ratio of the overall variance of posterior
samples across chains to the within-chain variance, and can be indicative for convergence prob-
lems. Fitting models in JAGS yields posterior distributions for each model parameter, from which
we can obtain point and standard error estimates by calculating the distributions’ means/medians
and standard deviations, respectively.

One way to forecast values of future observed data in JAGS before the data become available
is to insert missing values at the time locations to be forecast. For instance, a forecast for t∗ =
50 may be obtained by passing observed data from up to t <= 49 to JAGS, with missing values
inserted for all variables at t = 50. Our code, which is freely accessible at https://github.com/
yanlingli1/Bayesianforecast-RSZIMLP, demonstrates howmissing values are iteratively inserted
for the dependent variable and covariates at time t∗, with observed data provided only up to time
t∗−1 to yield one-step ahead forecast values for the dependent variable and associated covariates.
For forecasting purposes in the current study, we generally stop updating the model parameters
before the forecast window to emulate real-world forecasting scenarios in which forecasts may
have to performed using a model with parameters “frozen” at particular pre-estimated values.

3.4. Measures of Forecast Performance

The predictive estimates of Y∗
i,t are computed using data from up to time t − 1 (i.e., one-step

ahead forecast). LetFi,t−1 = {Y∗
i,1, . . . ,Y

∗
i,t−1} represent all information that is known up to time

t − 1 for individual i ; then, two elements are of interest in forecasting—the posterior predictive
distribution of Yi,t (i.e., P(Yi,t = y|Fi,t−1)) and the posterior predictive distribution of the regime
indicator variable, Si,t (i.e., P(Si,t = r |Fi,t−1)). As mentioned earlier, we use MCMC methods
to obtain samples from these posterior predictive distributions and calculate pertinent summary
statistics accordingly. For instance, the probability of being in regime 1 at time t conditional on
the observed data up to time t − 1 (i.e, P(Si,t = 1|Fi,t−1)) can be obtained by calculating the
empirical proportion of posterior samples of Si,t with values equal to 1.

Suppose that M iterations after the burn-in phase are implemented in the MCMC procedure,
and the posterior sample in the mth iteration drawn from the posterior predictive distribution
of Yi,t is denoted as ŷ(m)

i,t . To evaluate forecast accuracy and uncertainty, we calculate, for each
iteration, the average mean absolute error (MAE), root-mean-square error (RMSE), prediction
accuracy (ACC), recall (also called sensitivity), precision (also called positive predictive value),
and the area under the receiver operating characteristic (ROC) curve (AUC; see, e.g., Hanley and
McNeil 1982, Bradley 1997) across individuals and the last K time points we seek to forecast.

Among these measures, MAE and RMSE evaluate the forecast performance related to the
values of the dependent variable (e.g., alcohol use). Let yi,t (t = Ti − K +1, Ti − K +2, . . . , Ti )
be the actual value of the last K observations for individual i ; then, the MAE and RMSE at the
mth iteration are defined as:

https://github.com/yanlingli1/Bayesianforecast-RSZIMLP
https://github.com/yanlingli1/Bayesianforecast-RSZIMLP
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MAE(m) = 1

N × K

N∑
i=1

Ti∑
t=Ti−K+1

∣∣ŷ(m)
i,t − yi,t

∣∣, (17)

RMSE(m) =

√√√√√ 1

N × K

N∑
i=1

Ti∑
t=Ti−K+1

(
ŷ(m)
i,t − yi,t

)2
, (18)

ACC, recall, precision, and AUC evaluate the classification performance. Specifically, let
C (m)
i,t = 1 if the predictive probability ofYi,t being positive (i.e., P(Yi,t > 0|Fi,t−1)) is greater than

a decision threshold at the mth iteration, otherwise, C (m)
i,t = 0. For each iteration, the predictive

probability can be obtained as p̂(m)
1s,i,t (1 − e−λ̂

(m)
i,t ) according to Eq. 13, where λ̂

(m)
i,t and p̂(m)

1s,i,t are
the mth samples drawn from the posterior predictive distributions of λi,t and p1s,i,t , respectively.

Let TP(m), TN(m), FP(m), and FN(m) refer to the number of true-positive cases (i.e.,C (m)
i,t = 1

when yi,t > 0), true-negative cases (i.e., C (m)
i,t = 0 when yi,t = 0), false-positive cases (i.e.,

C (m)
i,t = 1 when yi,t = 0), and false-negative cases (i.e., C (m)

i,t = 0 when yi,t > 0), respectively,
across individuals and the last K time points, at the mth iteration. Then ACC, recall, precision,
and AUC at the mth iteration are defined as follows:

ACC(m) = TP(m) + TN(m)

TP(m) + TN(m) + FP(m) + FN(m)
, (19)

recall(m) = TP(m)

TP(m) + FN(m)
, (20)

precision(m) = TP(m)

TP(m) + FP(m)
. (21)

In the context of alcohol use, a higher recall score is desired because it reflects the ability
to correctly identify drinking instances (true positives). For instance, a recall of 1 means that all
drinking instances are predicted as drinking. The recall score can be increased by lowering the
decision threshold, but doing so also reduces the precision score such that more non-drinking
instances will be labeled as drinking. Therefore, we also evaluate the ROC curve which displays
true-positive rates versus false-positive rates at different classification thresholds and thus is useful
in the case of imbalanced data. The AUC score measures the area underneath the ROC curve,
which ranges from 0 to 1, with 0.5 representing a random guess and a value closer to 1 indicating
better capacity to distinguish between positive and negative cases. For each iteration, we can
obtain the predictive probability of Yi,t being positive as described above and then obtain the
AUC score, denoted as AUC(m).

UsingMCMCprocedures,we can obtain a posterior distribution of each performancemeasure
and then inspect its corresponding characteristics. Specifically, we calculate the means of these
distributions to obtain point estimates for the abovemeasures and standard deviations and quantiles
to quantify the uncertainty in these measures.

4. Simulation Study

4.1. Simulation Designs

The goal of the simulation study was to investigate the forecast performance of the proposed
model with different percentages of zeros in the data set. We considered two conditions—the
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moderate ZI condition where the percentage of zeros in the observations within each person was
50% on average, and the high ZI condition for which the percentage was 70% on average. The
sample size was set as N = 200 persons and T = 60 time points tomirror the number of participants
and the median time-series length in the empirical study. For each condition, we ran 500 Monte
Carlo replications, and for each replication, we ran two chains, each with 25000 iterations in total
and a burn-in of 5000 (discarded) iterations. The prior settings were identical to those described
in the Prior Specifications section.

Complete data were first simulated based on the model presented in Eqs. 7–10 and 14. For
simplicity purposes, we did not include person-specific covariates in Eqs. 8 and 10 and only
specified one person- and time-specific covariate in Eqs. 7 and 9, respectively. The true values
of model parameters under the moderate ZI condition were set as follows. The AR parameters,
including φ1 in Eq. 7 and φx1 and φz1 in Eq. 14, we set to 0.3, 0.9, and 0.6, respectively, based on
estimation results from fitting AR models in previous studies (e.g., Chow and Zhang 2013, You
et al. 2019, Li et al. 2021). The standard deviation parameters, including σε in Eq. 7, σv in Eq. 8,
and σx1 and σz1 in Eq. 14, were set to 0.5. In terms of the intercept parameters, the population
mean of the random intercepts (γ0 in Eq. 8) was set to 2 to distinguish between the ZI and Poisson
process; the log odds in the initial regime model (π0 in Eq. 10) were set to -2, assuming that the
initial time point was mostly in the ZI regime; the intercepts α01,0 and α10,0 in Eq. 9 were both
set to -2.5, assuming that individuals were more likely to stay in a certain regime. Finally, the
covariate coefficients, including β1 in Eq. 7 and α01,1 and α10,1 in Eq. 9, were set to 0.5, 0.2, and
0.2, respectively. The true values under the high ZI condition were identical to those under the
moderate ZI condition, except that α10,0 was set to -3.5 to decrease the probability of switching
to regime 1, thus increasing the percentage of zeros in the data.

Missingness in the dependent variable and two time-varying covariates was generated based
on the missing data mechanism specified below.

P(Ryi,t = 1|c1,i,t , c2,i,t ) = logit−1(−1.1 + 0.6c1,i,t + 0.6c2,i,t )

P(Rx1,i,t = 1|c3,i,t , c4,i,t ) = logit−1(−1.1 + 0.6c3,i,t + 0.6c4,i,t )

P(Rz1,i,t = 1|c3,i,t , c4,i,t ) = logit−1(−1.1 + 0.6c3,i,t + 0.6c4,i,t )

(22)

where R was themissing indicator (1 =missing) and the probability ofmissingness was dependent
on fully observed variables, c1,i,t - c4,i,t , simulated from a uniform distribution, U [-3, 3], thus
yielding an MAR condition and missing rates of 30% for the dependent variable and covariates,
which mirrored the proportion of missingness in the empirical data.

Then, we applied the proposed model to the simulated data to forecast the last observation
of each individual. The data generation code and JAGS scripts for model fitting can be accessed
via the link provided before. The calculation of the above performance measures involved saving
all posterior samples for each replication. Given the constraints of computational resources, we
obtained the point estimates of these measures for each replication and then calculated the means
across replications to measure forecast accuracy and standard deviations and quantiles to measure
forecast uncertainty. In addition, to evaluate other estimation properties of the proposed approach,
we calculated biases, standard errors (i.e., standard deviations of the posterior distributions of the
parameters), and coverage rates (i.e., the percentage of replications in which the credible intervals
contained the true values) of all parameters presented above across 500 replications.

4.2. Simulation Results

As mentioned before, we used ESS and R̂ to check the sampling efficiency and convergence
issues. No replications indicated problems with convergence—R̂ was below 1.1 for all parameters
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in all replications. The ESSwas generally good (i.e., greater than 800) for most parameters, except
for the AR parameter (i.e., φ1) in the multilevel AR-X model, for which the average ESS across
replications was around 300 and 200 under the moderate ZI and high ZI conditions, respectively.
The lower ESS under the high ZI condition indicated that the low ESS with the AR parameter
was likely due to the large proportion of zeros and relatedly, limited data from the AR process
to estimate this parameter well. Even so, the ESS can be deemed acceptable, especially when the
forecast performance was of greater interest in the present study.

The estimation results are summarized in Table 1. We found that with both conditions, most
parameters were recovered accurately as indicated by their biases and coverage rates, except
that the AR parameter, φ1, had slightly larger biases (e.g., -0.04) and lower coverage rates. By
comparing the estimated and true latent regime indicators for all individuals from time 1 to Ti−1 in
one simulation replication, we found that 98% of the regime indicators were correctly recovered.

The forecast results are summarized in Table 2 and displayed in Fig. 2. Under both conditions,
the proposed model yielded good forecast performance as indicated by mean AUC scores higher
than 0.9, as well as mean ACC, recall, and precision scores close to 0.9, under the decision thresh-
old of 0.5. The comparison between conditions showed better forecast accuracy under the high ZI
condition than the moderate ZI condition, as indicated by notably higher ACC and AUC scores, as
well as lower MAEs and RMSEs. This was expected as higher instances of staying within a par-
ticular regime—in our case, the ZI regime—generally ease forecast complexity in most scenarios.
However, the comparable recall and precision values across the two conditions provided some
reassurance of the performance of the proposed estimation procedures in successfully detecting
positive cases (e.g., drinking) despite the presence of high instances of ZI.

In terms of forecast uncertainty, the standard deviations of ACC and AUC scores were iden-
tical between two conditions; the high ZI condition showed slightly higher levels of forecast
uncertainty on recall and precision scores and lower levels of forecast uncertainty on MAEs and
RMSEs. In sum, our simulation results showed that improved forecast accuracy can be attained
within the context of the RS-ZIMLP model with increased instances of replications in each
regime. The simulation study further validated the capacity of the proposed model and estima-
tion procedures in detecting positive cases (e.g., drinking) even with high instances of ZI, and
clarified whether and in what ways classification-based performance indices such as ACC, AUC,
recall, and precision might provide supplemental formation concerning forecast utility relative to
discrepancy-based measures such as MAEs and RMSEs.

5. Empirical Study

5.1. Data Descriptions

The empirical data used in this study were part of the CoTwins, an intensive longitudinal
study of adolescent twins recruited from Colorado Department of Health birth records. Twins
were initially recruited at ages 14–17 and followed from 2015 to 2018. Throughout the study,
in each week, participants were asked to report whether they used substances and if so, what
substances they used in the past week. If the participants chose a certain type of substance (i.e.,
alcohol, marijuana, cigarettes), they would be directed to answer the frequency and quantity of
substance use during that week. The responses ranged from 1 to 7 in terms of the frequency (i.e.,
number of days they drank alcohol in the past week) of all types of substance use.

In terms of quantity, the quantity of alcohol use was measured by the number of drinks per
day (i.e., “on those days that you drank alcohol, how many drinks2 did you usually have each
day?”). Part of a drink was coded as 0.5 and re-coded as 1 in our analysis so that the dependent

2One “drink” is equal to 1 can or bottle of beer, a glass of wine, or a shot of hard liquor.
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Table 1.
Comparison of estimation performance based on 500 replications.

True Moderate ZI High ZI
Bias SE CR(%) Bias SE CR(%)

Parameters in the Poisson process
(see Eqs. 7–8)
γ0 2 0.00 0.04 96 0.00 0.04 95
φ1 0.3 -0.04 0.02 62 -0.04 0.03 72
β1 0.5 0.02 0.02 86 0.02 0.03 89
σv 0.5 0.00 0.03 96 0.00 0.04 96
σε 0.5 0.00 0.01 94 0.00 0.01 95
Parameters in the initial regime Model
(see Eq. 10)
π0 -2 0.24 0.26 81 0.15 0.25 90
Parameters in the RS model (see Eq. 9)
α01,0 -2.5 0.00 0.06 97 0.00 0.08 94
α01,1 0.2 0.00 0.05 96 0.00 0.07 94
α10,0 -2.5 -0.01 0.05 96

-3.5 -0.02 0.07 95
α10,1 0.2 0.00 0.05 95 0.00 0.06 96
Parameters in the covariate model (see Eq. 14)
φx1 0.6 0.00 0.01 93 0.00 0.01 93
σx1 0.5 0.00 0.00 93 0.00 0.00 93
φz1 0.9 0.00 0.00 95 0.00 0.00 95
σz1 0.5 0.00 0.00 95 0.00 0.00 95

True: true values; Bias: estimates minus true values; SE: standard errors estimated by standard deviations
of the posterior distributions; bias and SE were averaged across 500 replications, respectively; CR(%):
percentages of replications in which the credible intervals contained the true values.

variable took integer values, as consonant with properties of count data. In a similar vein, the
rest of the options, ranging from one drink to 20 drinks, were re-coded as 2 to 40 to reflect the
original scale. Note that the option “more than 20 drinks” was also coded as 40. The quantity of
marijuana use was measured by the number of times per day they used enough to feel the effects,
which ranged from 0 to 5 times. Note that zero responses on marijuana use indicated that the
participants never had enough to feel the effects and the option “more than 5 times” was coded
as 5. The quantity of cigarette use was measured by the number of cigarettes per day as well as
the number of times per day they used e-cigarettes, which ranged from 0.5 to 30 (more than 30
cigarettes was coded as 30), and 1 to 10 (more than 10 times was coded as 10), respectively.

5.2. Forecasting with Spatial Information from GPS Data

Technological advances in the past decades now allow physical location data from smart-
phones with GPS capabilities to serve as measures of environmental context. As postulated by the
Ecological Systems Theory (Bronfenbrenner 1992) and consistent with findings from empirical
studies, adolescents’ pathways to alcohol use and abuse are associated with social contextual
factors such as proximity to alcohol outlets (Byrnes et al. 2017; 2016). While the causal nature
of such associations is far from clear, identifying such a correlation is the first step in evaluating
the utility of GPS for measuring environmental influences. Therefore, we conducted exploratory
analyses using the spatial measures described below to help enhance our understanding of when,
how, and why some adolescents transition into and sustain regular use of alcohol.
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Table 2.
Comparison of forecast performance based on 500 replications.

Moderate ZI High ZI
Mean SD 95% CI Mean SD 95% CI

ACC* .87 .02 [.82, .91] .93 .02 [.89, .96]
recall* .86 .04 [.79, .92] .86 .05 [.76, .94]
precision* .88 .03 [.81, .94] .88 .05 [.78, .96]
AUC .91 .02 [.87, .95] .94 .02 [.89, .98]
MAE 3.22 0.44 [2.47, 4.14] 1.78 0.33 [1.20, 2.44]
RMSE 6.84 1.42 [4.90, 9.96] 5.03 1.33 [3.09, 8.09]

The calculation of ACC, recall, and precision was based on a threshold of 0.5. The mean, SD, and 95%
CI represented the means, standard deviations, and 95% credible intervals of these measures across 500
replications.
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Figure 2.
Comparisons of forecast accuracy and uncertainty under the high ZI (black) and moderate ZI (grey) condition in the
simulation study. Performance measures considered included ACC, recall, precision, AUC (the left plot), MAE and
RMSE (the right plot). The calculation of ACC, recall, and precision was based on a threshold of 0.5.

The spatial measures used in this study included shared space and time spent with twin
siblings, as well as time spent near certain landmarks, such as bars, mental health services, and
gyms—all measures were aggregated to a weekly level to mirror the time scale of the substance
use data (see definitions and calculations below). We hypothesized that shared space and time
spent with twin siblings might be an interpersonal factor that protects against alcohol use (Maisto
et al. 2017) in that adolescents who had stronger social relationships with their twin siblings might
be more likely to stay within the drinking regime and also less likely to switch from the ZI to the
drinking regime. The time spent near certain landmarks was also hypothesized to be associated
with alcohol use because it might reflect individuals’ activities and social contacts. Specifically,
although it is unlikely that adolescents drink alcohol in bars, proximity to bars (e.g., within a radius
of 100 meters) could be an indicator of social contacts (Reboussin et al. 2011) and perceptions of
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use as normative (Pasch et al. 2009). Time spent near bars was thus hypothesized to be positively
associated with alcohol use. Based on previous studies on the comorbidity between mental health
disorders and alcohol use (Jane-Llopis and Matytsina 2006), we assumed that time spent near
mental health services would serve as an indicator for mental health problems and thus would
be positively associated with alcohol use. In contrast, time spent near gyms might indicate good
maintenance of physical and mental health and was thus hypothesized to be negatively associated
with alcohol use.

5.2.1. Calculation of Spatial Measures from GPS Data The location (GPS) data were col-
lected using participants’ own smartphones. With iOS devices, the protocol was that location was
reported every time participants moved a significant distance (i.e., 500 meters); with Android
devices, a location was to be reported every five minutes. Prior to extracting the spatial measures
of interest, some data processing steps were needed. Specifically, records with less than 20 valid
data points within a week were excluded from the data set because these unusually low numbers
of GPS points lacked sufficient variability to reflect the mobility trajectories of the participants
over the course of a week and likely reflected missing data instead of a true mobility trace. In
addition, data points representing long-distance travels and other atypical travel trajectories were
excluded from the data set because these points were extreme outliers that would bias estimation
of the spatial and mobility patterns of the individuals. For outlier detection purposes, we used
an R package, Density-Based Spatial Clustering of Applications with Noise (dbscan; Hahsler et
al. 2019), to identify clusters and outlying points based on a density-based clustering algorithm
(Ester et al. 1996).

Using the pre-processed GPS data, we derived the following person- and time-varying spatial
measures via a Python package, gps2space (Zhou et al. 2021a, b). Users are referred to the
documentation (https://gps2space.readthedocs.io/en/latest/) of this package, which provides the
step-by-step guide to calculating the key spatial measures.

Activity Space and Shared Space. In this study, an individual’s daily activity space was
defined as the area of the minimum bounding geometry enclosing all the non-missing latitude
and longitude coordinates for that individual over the entire day. The buffer method was used in
this study to build such the bounding geometry from coordinates, which required the selection of
a predefined buffer size that determined the smallest size of the bounding geometry thought to
reflect meaningful, quantifiable distance given the accuracy of the GPS devices. In our case, we
set the buffer to 1,000 meters based on previous studies (e.g., James et al. 2014, Perchoux et al.
2016). The daily shared space was then defined as the proportion of overlapping areas of daily
activity spaces between a participant and his/her twin sibling. We then aggregated it to a weekly
measure by averaging daily shared spaces over the course of a week.

Time SpentWith Twin Siblings Over theWeek. The shared space calculated above simply
captured general physical proximity in terms of overlap in activity spaces, and therefore, it was not
a direct validation that two twin members were actually at the same location at a particular time
point. Rather, what thismeasure providedwas some information concerning similarity in everyday
routines between twin members. To approximate the time spent together with twin siblings, we
first built hourly buffer-based activity spaces with a buffer size of 100 meters for each twin pair
and considered them to be together if their activity spaces overlapped. This yielded a dummy
variable with 1 representing being together over the course of an hour. We then aggregated it to
a weekly measure by calculating the proportion of 1’s over each week, thus yielding proportions
ranging from 0 to 1, which were regarded as the approximation to the time spent together with
twin siblings over the week.

Time Spent Near Landmarks Over the Week. The landmarks considered in this study
included bars, mental health services, and gyms. For each pair of GPS coordinates, each par-
ticipant’s distance from a particular landmark (e.g., distance from gyms) was computed as the

https://gps2space.readthedocs.io/en/latest/
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Euclidean distance from the coordinates recorded from participants’ devices to the coordinates of
the nearest landmark (e.g., the nearest gym)3. Participants were considered to be at that landmark
if the Euclidean distance was less than 100 meters, thus yielding a dummy variable with 1 repre-
senting being at the landmark at a particular time point. Similar to the calculation of time spent
with twin siblings, we aggregated it to a weekly measure by calculating the proportion of 1’s over
each week and regarded it as the approximation to the time spent near a specific landmark over
the week.

5.3. Data Analytic Plans

The above person- and time-specific spatial measures were scaled within-person and across
time points to zero mean and unit variance and then merged with the weekly substance use data.
All substance use measures were calculated as the product of frequency (e.g., number of days
they drank alcohol in the past week) and quantity (e.g., number of drinks per day), as defined
above. In particular, cigarette use was calculated as the sum of cigarettes and e-cigarettes. Both
marijuana and cigarette use were first log-transformed and then scaled within-person and across
time points to zero mean and unit variance.

Our final data set were built based on the following selection criteria: 1) participants should
have both substance use and GPS data over the same time period; 2) the total number of time
points for each participant should be no less than 8. That is, participants should have at least 8
weeks’ data; 3) the missing rate for each variable should be less than 90% for each participant.
As a result, the sample size was reduced from 670 to 402, with the number of weeks for each
participant ranging from 8 to 95. Participants’ ages at the initial time point ranged from 14 to 20,
and 41% of the participants were males. For each variable considered in the present study, the
median of themissing rates across participantswas 35% for substance usemeasures, 4% for shared
space, 1% for time spent near landmarks, and 10% for time spent with twin siblings, respectively.
Note that in reality, participants might not provide one response per week, thus yielding irregu-
larly spaced data. Thus, we blocked the data at equally spaced time windows (i.e., weeks) and
inserted missingness in weeks with no responses, which inevitably generated a large proportion
of missingness. However, previous studies have shown that reasonable inferential results could
be obtained from fitting dynamical systems models with large proportions of missingness (e.g.,
more than 50% missingness; see, e.g., Jacobson et al. 2019, Ji et al. 2020). We also discussed
other possible ways of handling missing data in the Discussion section.

With all these measures, we adapted Eqs. 7–9 to build the following RS-ZIMLP model for
forecasting adolescent alcohol use.

ηi,t = φ0,i + φ1(ηi,t−1 − φ0,i ) + β1Mari,t−1 + β2Cigi,t−1 + εi,t , εi,t ∼ N (0, σ 2
ε ) (23)

φ0,i = γ0 + γ1Genderi + γ2Agei + vi , vi ∼ N (0, σ 2
v ) (24)

P(Si,1 = 1) = exp(π0 + π1Bari + π2Menthi + π3Gymi + π4SSi + π5Togetheri )

1 + exp(π0 + π1Bari + π2Menthi + π3Gymi + π4SSi + π5Togetheri )
(25)

P(Si,t = r |Si,t−1 = s)

= exp(αrs,0 + αrs,1Bari,t + αrs,2Menthi,t + αrs,3Gymi,t + αrs,4SSi,t + αrs,5Togetheri,t )∑2
r=1 exp(αrs,0 + αrs,1Bari,t + αrs,2Menthi,t + αrs,3Gymi,t + αrs,4SSi,t + αrs,5Togetheri,t )

(26)

3It should be noted that these Euclidean distances were crude measures and did not measure the actual road distances
that the participants had to travel (by walking or transportation) to the landmarks. Future research could consider road
network-based distance measures.
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Table 3.
Comparison of forecast performance based on empirical data (N = 402).

Null Model ZIMLP RS-ZIMLP
Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

ACC* 0.87 - - 0.84 0.01 [0.83, 0.85] 0.91 0.00 [0.90, 0.92]
recall* 0.00 - - 0.73 0.02 [0.70, 0.75] 0.77 0.03 [0.72, 0.82]
precision* - - - 0.46 0.01 [0.44, 0.48] 0.71 0.02 [0.68, 0.75]
AUC - - - 0.90 0.00 [0.89, 0.91] 0.93 0.01 [0.92, 0.94]
MAE 1.57 - - 1.72 2.31 [1.39, 4.13] 1.27 1.21 [0.96, 3.40]
RMSE 5.82 - - 5.11 9.17 [3.24, 34.67] 4.53 9.97 [2.85, 40.45]

The forecast performance was evaluated based on all participants (N = 402) in the empirical study. The
calculation of ACC, recall, and precision was based on a threshold of 0.3 for both ZIMLP and RS-ZIMLP
models. The mean, SD, and 95% CI represented the means, standard deviations, and 95% credible intervals
of the posterior distributions of these measures.

Briefly, substance use measures (Mar = marijuana use; Cig = cigarette use) at time t − 1 were
included in the AR-Xmodel as predictors of levels of alcohol use at time t in the drinking regime;
gender (0 = female; 1 = male) and baseline age (centered by subtracting the minimum baseline
age so that 0 corresponded to age 14) were included in the level-2 model to explain individual
differences in the average levels of alcohol use such that γ0 represented the average alcohol use
for females at age 14 with average levels of marijuana and cigarette use across participants; the
person-specific covariates in Eq. 25 represented the average levels of spatial measures (Bar =
time spent near bars; Menth = time spent near mental health services; Gym = time spent near
gyms; SS = shared space; Together = time spent with twin siblings) across the entire study span
(except for the last 5 observations since they were used to evaluate forecast performance in this
study) for each person, hypothesized to be associated with initial regime probabilities. In contrast,
the person- and time-specific covariates in Eq. 26, which by definition represented time-varying
within-person deviations from average levels of spatial measures, were assumed to explain log-
odds of RS dependencies, under the assumption that the GPS data collected during week t would
help forecast the transition probability in this week. We expected greater shared space and time
spent with twin siblings and longer time spent near gyms than usual to increase adolescents’ log
odds of transitioning to the ZI regime and reduce the log odds of transitioning to the drinking
regime. We expected longer time spent near bars and mental health services than usual to assume
the reversed roles.

Given the high proportion of non-drinking instances in the empirical data, a reasonable
baseline model would be a model that always posited non-drinking for all participants and time
points. We refer to this as the “Null Model”. As an alternative comparison, we also fitted a ZIMLP
model without the RS structure, whose ZI component was defined as an ordinary logistic model
shown below.

logit(pi,t ) = α0 + α1Bari,t + α2Menthi,t + α3Gymi,t + α4SSi,t + α5Togetheri,t (27)

Here, the person- and time-specific covariates were assumed to explain log-odds of being in the
drinking regime.

We then applied both models to forecast the last 5 observations of alcohol use for each
individual, following the one-step-ahead forecast procedure described before. The number of
chains, number of (burn-in) iterations, and prior settings were almost identical to those adopted
in the simulation study, except that a more informative prior (i.e., N (2, 5)) was assigned to γ0
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Table 4.
Comparison of forecast performance based on empirical data (N = 142).

Null Model ZIMLP RS-ZIMLP
Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

ACC* 0.66 – – 0.62 0.01 [0.60, 0.64] 0.82 0.01 [0.80, 0.85]
recall* 0.00 – – 0.73 0.02 [0.69, 0.76] 0.77 0.03 [0.72, 0.83]
precision* – – – 0.46 0.01 [0.45, 0.48] 0.71 0.02 [0.68, 0.75]
AUC – – – 0.69 0.01 [0.66, 0.71] 0.82 0.01 [0.79, 0.85]
MAE 4.24 – – 4.67 0.60 [3.87, 6.27] 3.44 0.47 [2.69, 4.54]
RMSE 9.57 – – 8.41 4.96 [5.78, 22.97] 7.45 2.89 [5.29, 15.97]

The forecast performance was evaluated based on participants who consumed alcohol at least once during
the study (N = 142). The calculation of ACC, recall, and precision was based on a threshold of 0.3 for both
ZIMLP and RS-ZIMLP models. The mean, SD, and 95% CI represented the means, standard deviations,
and 95% credible intervals of the posterior distributions of these measures.

because eγ0 reflected the overall baseline around which the levels of alcohol use fluctuated in the
drinking regime and thus was assumed to be higher than zero. The mean of the prior distribution
of γ0 was thus specified as the empirical log mean of alcohol use when participants used alcohol,
and a small variance (i.e., 5) was specified so that eγ0 would not take extremely low or high values.

5.4. Empirical Results

We first fitted the full RS-ZIMLP model presented in Eqs. 23–26 and found that none of
the person-specific spatial measures covariates, shown in Eq. 25, were credibly linked to initial
regime probabilities. That is, all of the credible intervals of the coefficients linking initial regime
probabilities to these covariates (i.e.,π1 -π5) contained 0; therefore, in the final RS-ZIMLPmodel,
we removed these covariates and only estimated the intercept, π0, in Eq. 25. The time-varying
spatial covariates in Eqs. 26 and 27were kept in the final ZIMLPmodel to explore the associations
between these spatial measures and the probability of being in the drinking regime, and were also
kept in the final RS-ZIMLPmodel to explore associations between spatial measures and transition
probabilities, as well as facilitate forecasts. In addition, both ZIMLP and RS-ZIMLP models
yielded low ESSs and R̂s higher than 1.1 for the AR parameters. The non-convergence might be
due to the large proportion of missingness and instances of staying long in the drinking regime
being so rare (e.g., the median of the proportions of zero responses was 83% across participants),
and thus, information on the AR process was limited. Hence, we reduced the multilevel AR-X
model to a random intercept-only model with covariates by removing φ1(ηi,t−1 − φ0,i ) and εi,t
on the right-hand side of Eq. 23. The following descriptions were based on this reduced model.

On an Intel i7-8700, 64GBRAM,Windows 10 computer, it took about 8 hours and 36 hours to
run the ZIMLP and RS-ZIMLPmodel, respectively. The diagnostic criteria for adequate sampling
were set as ESS greater than 800 and R̂ below 1.1. Results showed that ESS was greater than
800 for 78% and 76% of the parameters with the ZIMLP and RS-ZIMLP models, respectively.
Parameters with low ESS included γ0, γ1, γ2, σv , and the ESS reached a minimum of 200 for
these parameters, which can be deemed acceptable. The R̂ was below 1.1 for all parameters with
both models.

We first compared the forecast performances of the different candidate models considered
based on all participants in the data set (N = 402) and a subset of participants who consumed
alcohol at least once during the study (N =142). Here, the calculation ofACC, recall, and precision
scores was based on a threshold of 0.3 for both ZIMLP and RS-ZIMLP models. Table 3 shows
forecast performance based on the full sample size. Both the ZIMLP and RS-ZIMLP models
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Table 5.
Parameter estimates for empirical data.

Parameter ZIMLP RS-ZIMLP
Est SE 95% CI Est SE 95% CI

Parameters in the Poisson process (see Eqs. 23–24)
Fixed effects
Intercept, γ0 −3.97 0.33 [−4.62, −3.32] −3.23 0.30 [−4.12, −2.75]
Gender, γ1 −1.02 0.53 [−2.08, 0.01] −0.95 0.49 [ −1.91, 0.02]
Age, γ2 1.23 0.20 [0.83, 1.61] 1.17 0.19 [0.78, 1.55]
Marijuana use, β1 0.01 0.04 [−0.06, 0.09] 0.01 0.03 [−0.06, 0.08]
Cigarette use, β2 0.12 0.04 [0.04, 0.21] 0.10 0.04 [0.02, 0.18]
Random effects
SD, σv 4.23 0.27 [3.73, 4.78] 3.96 0.24 [3.46, 4.38]
Parameters in the regime-defining model (see Eq. 27)
Intercept, α0 −0.70 0.04 [−0.78, −0.61]
Bar, α1 0.03 0.04 [−0.04, 0.11]
Menth, α2 −0.03 0.04 [−0.11, 0.04]
Gym, α3 −0.08 0.04 [−0.16, 0.00]
SS, α4 −0.07 0.04 [−0.15, 0.02]
Together, α5 −0.12 0.05 [−0.22, −0.03]
Parameters in the initial regime model
(see Eq. 25)
Intercept, π0 −1.76 0.22 [−2.20, −1.32]
Parameters in the RS model
(see Eq. 26)
ZI → drinking, Intercept, α10,0 −1.60 0.06 [−1.72, −1.48]
ZI → drinking, Bar, α10,1 0.01 0.06 [−0.12, 0.12]
ZI → drinking, Menth, α10,2 0.04 0.06 [−0.08, 0.15]
ZI → drinking, Gym, α10,3 −0.11 0.06 [−0.24, 0.02]
ZI → drinking, SS, α10,4 0.00 0.07 [−0.14, 0.14]
ZI → drinking, Together, α10,5 0.01 0.07 [−0.12, 0.16]
drinking → ZI, Intercept, α01,0 −0.44 0.07 [−0.58, −0.30]
drinking → ZI, Bar, α01,1 −0.08 0.08 [−0.24, 0.07]
drinking → ZI, Menth, α01,2 0.06 0.07 [−0.08, 0.21]
drinking → ZI, Gym, α01,3 0.12 0.08 [−0.03, 0.28]
drinking → ZI, SS, α01,4 0.12 0.09 [−0.06, 0.28]
drinking → ZI, Together, α01,5 0.18 0.09 [0.01, 0.36]
Parameters in the covariate model (see Eq. 14)
Marijuana use
φx1 0.12 0.01 [0.10, 0.14] 0.12 0.01 [0.09, 0.14]
σx1 0.46 0.00 [0.45, 0.46] 0.46 0.00 [0.45, 0.46]
Cigarette use
φx2 0.25 0.01 [0.23, 0.27] 0.25 0.01 [0.23, 0.27]
σx2 0.45 0.00 [0.44, 0.45] 0.45 0.00 [0.44, 0.45]
Time spent at bars
φz1 0.11 0.01 [0.09, 0.12] 0.11 0.01 [0.09, 0.12]
σz1 0.98 0.01 [0.97, 0.99] 0.98 0.01 [ 0.97, 0.99]
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Table 5.
continued

Parameter ZIMLP RS-ZIMLP
Est SE 95% CI Est SE 95% CI

Time spent at mental health services
φz2 0.03 0.01 [0.02, 0.05] 0.03 0.01 [0.02, 0.05]
σz2 0.97 0.01 [0.96, 0.98] 0.97 0.01 [0.96, 0.98]
Time spent at gyms
φz3 0.09 0.01 [0.08, 0.11] 0.09 0.01 [0.08, 0.11]
σz3 0.98 0.01 [0.97, 0.99] 0.98 0.01 [0.97, 0.99]
Shared space with twin siblings
φz4 0.32 0.01 [0.31, 0.33] 0.32 0.01 [0.31, 0.33]
σz4 0.86 0.00 [0.85, 0.87] 0.86 0.00 [ 0.85, 0.87]
Time spent with twin siblings
φz5 0.29 0.01 [0.27, 0.31] 0.29 0.01 [0.27, 0.31]
σz5 0.94 0.01 [0.93, 0.95] 0.94 0.01 [0.93, 0.95]

yielded satisfactory classification performance in terms of distinguishing between positive cases
(drinking) and negative cases (non-drinking), as indicated by their respective AUC scores, which
were both greater than 0.9. The RS-ZIMLP model yielded better classification performance than
the ZIMLP model as indicated by its higher AUC score, and its ROC curve that was further away
from the diagonal line, as shown in Fig. 3a. Under the threshold of 0.3, the RS-ZIMLP model
yielded higher ACC, recall, and precision scores than the other two models. As mentioned before,
one could modify the threshold to obtain different values for these measures. Hence, caution need
to be exercised when comparing forecast performance based on these measures. Due to the large
proportion of zeros, the null model also yielded good accuracy (i.e., 0.87), but the recall score was
merely 0. Finally, the comparisons of the means and standard deviations of MAEs and RMSEs
showed that the RS-ZIMLP model yielded slightly better forecast accuracy than the other two
models and comparable forecast uncertainty to the ZIMLP model.

A substantial proportion (i.e., 65%) of the participants in the current sample never reported
consuming any alcohol during the entire study span. These participants did not provide helpful
information concerning possible timing and determinants of transition to drinking, so we then
conducted a closer inspection of participants who consumed alcohol at least once during the study
(i.e., N = 142). The forecast performance for this subset of participants can be found in Table 4.
We can see that for this particular subset of participants, the differences in forecast performance
across candidate models were substantial. Specifically, the AUC score with the RS-ZIMLPmodel
was reduced to 0.82, which was still satisfactory, whereas the AUC score with the ZIMLP model
decreased to 0.69 (see also Fig. 3b for the comparison of ROC curves). The recall and precision did
not change, indicating no false identification of non-drinking participants (N = 260) as drinking
within the forecast window. Since many instances of zeros were removed, the ACC of the null
model was reduced to 0.66. Finally, comparisons of the means and standard deviations of MAEs
and RMSEs showed that the RS-ZIMLP model yielded notably better forecast accuracy than the
other two models and slightly less forecast uncertainty.

To help clarify the respective strengths and limitations of the candidate models in forecasting
and explaining individuals’ drinking dynamics, we inspected the parameter estimates correspond-
ing to the ZIMLP and RS-ZIMLP model, as summarized in Table 5. The two models yielded
similar results in terms of parameters in the Poisson process. Specifically, in terms of alcohol use
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dynamics in the drinking regime, we found that cigarette use in the previous week was positively
associated with alcohol use in the current week (e.g., β2 = 0.10, 95%CI = [0.02, 0.18]), indicating
that higher levels of cigarette use tended to predict more alcohol use in the following week. Such
credible relationship was not found between marijuana and alcohol use.We also found substantial
individual differences in participants’ average levels of alcohol use while in the drinking regime,
as indicated by the large random effect standard deviation (e.g., σv = 3.96) with its corresponding
credible interval being relatively narrow (e.g., 95% CI = [3.46, 4.38]). In addition, older adoles-
cents were found to have higher average levels of alcohol use (e.g., γ2 = 1.17, 95% CI = [0.78,
1.55]). No credible gender difference was found in adolescents’ average levels of alcohol use.
This lack of credible gender difference in average alcohol use was consistent with the finding from
the Substance Abuse and Mental Health Services Administration (SAMHSA)’s National Survey
on Drug Use and Health (NSDUH; SAMHSA, 2008), which indicated that males only started to
demonstrate higher levels of alcohol use than females as they moved into young adulthood. The
majority of participants in the present study were in the stage of middle adolescence (i.e., ages
14 to 17), and we did not find consistent evidence for gender differences at this age span.

Results frombothZIMLP andRS-ZIMLPmodels suggested that time spentwith twin siblings
could be a protective factor against alcohol use, but in slightly different ways. Specifically, results
from the ZIMLPmodel showed that individualswere less likely to be in the drinking regime during
the weeks when they spent more time with their twin siblings than usual (α5=-0.12, 95% CI =
[-0.22, -0.03]). The RS-ZIMLP model provided more nuanced clarifications of the mechanisms
for this predictor’s protective roles: individuals were more likely to transition from the drinking
regime (regime 1) to the ZI regime (regime 0) during the weeks when they spent more time with
their twin siblings than usual (α01,5 = 0.18, 95% CI = [0.01, 0.36]). Thus, whereas spending more
time with twin siblings did not appear to help prevent individuals to transition from non-drinking
to drinking, doing so was associated with increased probability of returning to non-drinking
following a drinking episode.

Results for covariate model parameters are also summarized in Table 5. Briefly, for each
covariate considered in the final model, the current measurement was positively associated with
the previous measurement, indicating that if individuals spent much time near these landmarks or
had a large proportion of shared space or spent time mostly with their twin siblings in the current
week, it is likely that they would continue doing so in the following week.

In terms of individual forecast performance, we compared the biases (i.e., predicted values
minus actual values) for all individuals between the two models in Fig. 3c. Recall that one drink
was coded as 2 in the data set, so a bias of -10 means 5 drinks less than the actual value. The two
models yielded similar predictive results for most individuals, as indicated by a large proportion
of points around the diagonal line. Most biases were close to 0, indicating overall satisfactory
forecast accuracy with both models. However, both models failed to capture heavy drinking, as
reflected by instances with higher negative bias values.

To further evaluate the individual forecast performance of the proposed model, we plotted
observed alcohol use (blue lines), imputed/forecast alcohol use (red lines), uncertainty in impu-
tation/forecast (red error bars), the estimated/predictive probability of drinking alcohol (shaded
areas) for three participants in Fig. 4. These plots helped highlight circumstances in which the
proposed RS-ZIMLP model yielded reasonable (e.g., participants 1 and 2) as compared to inad-
equate (e.g, participant 3) forecast performance. Note that missing entries in the alcohol use
variable were imputed in the model fitting process, so there were also error bars indicating uncer-
tainty in imputation before the forecast window. In both participants 1 and 2, the actual amounts
of alcohol use fell within the credible intervals of the predicted alcohol use values. In contrast,
participant 3’s heavy observed alcohol use during the forecast window was not enclosed within
the credible intervals of the participant’s predicted alcohol use (see Fig. 4c). Thus, even though
the RS-ZIMLP model was reasonable at forecasting instances of zero to moderate drinking, it fell
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Figure 3.
aROC curves for the ZIMLPmodel (dashed line) and RS-ZIMLPmodel (solid line) generated based on all participants (N
=402).bROCcurves for theZIMLPmodel (dashed line) andRS-ZIMLPmodel (solid line) generated based on participants
who consumed alcohol at least once during the study (N = 142). c Comparison of the forecast biases (predicted values
minus actual values) for all participants (N = 402) with the ZIMLP model (y-axis) and the RS-ZIMLP model (x-axis).

short in predicting instances of heavy alcohol use. Despite this, we have verified post hoc that
in the forecast window, most heavy drinking instances occurred immediately after non-drinking
instances. It is challenging to capture such sudden and sharp shifts without sufficient contextual
information before the shifts, such as information from other person- and time-specific covariates
that align closer in time with the corresponding sudden shifts in alcohol use (e.g., spatial, social,
and other interpersonal covariate information from yesterday, as opposed to one week earlier)
may be helpful. In the present study, the covariates investigated were inadequate at predicting
the transition from non-drinking to drinking, and to a lesser degree, the reverse transition from
drinking to non-drinking. That is, none of the covariates were characterized by coefficients that
were credibly different from 0 in predicting the transition from non-drinking to drinking, although
one covariate, time spent with twin siblings, did have a coefficient that was credibly different from
0 in predicting the transition from drinking to non-drinking.

6. Discussion

In this paper, we proposed a Bayesian RS-ZIMLP model to forecast count time-series data
with excess zeros. Our proposed model is innovative by incorporating time dependencies between
observations in both the Poisson andZI component of the ZIPmodel. In particular, we added anRS
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Figure 4.
Plots of observed alcohol use (blue thick lines), imputed/forecast alcohol use (red thin lines) with uncertainty (red error
bars), and estimated/predictive probability of drinking alcohol (shaded area) for three participants to show the forecast
performance with different trajectory patterns. The time period between the two black vertical lines was the forecast
window. The left y-axis represented the observed and forecast value of alcohol use (see how alcohol use values were
coded in the Data Descriptions subsection), whereas the right y-axis represented the probability of drinking alcohol,
whose scale was different from the left y-axis (Color figure online).
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structure to the ZI component to capture the underlyingmechanism of transitioning between the ZI
regimeand thePoissonprocess in the changeprocess. The simulation results suggested satisfactory
estimation and forecast performance with the proposed model with different levels of ZI in the
data, and slightly better forecast accuracy and less forecast uncertainty under the highZI condition.
The proposed model was applied to data collected from CoTwins to forecast adolescent alcohol
use. Compared with the null model and the ZIMLP model, a set of performance measures (e.g.,
AUC, MAE, and RMSE) indicated that the proposed model yielded more accurate representation
of time dependencies in alcohol use and thus higher forecast accuracy. Such improvement in
forecast performance was evenmore pronounced whenwe limited the comparisons to participants
who consumed alcohol at least once during the study. The investigation of individual forecast
performance showed that the proposed model was good at forecasting non-drinking and moderate
drinking, but not sudden shifts to heavy drinking.

Spatial measures derived fromGPS data, including time spent near certain landmarks, shared
space and time spentwith twin siblingswere included in theRSmodel to explainwithin-individual
transitions between the ZI and drinking regimes. Results showed that individuals weremore likely
to transition from the drinking regime to the ZI regime during theweekswhen they spentmore time
with their twin siblings than usual. In addition, none of the person-specific, time-invariant spatial
measures helped explain substantial between-person differences in initial regime probabilities.
Our findings suggested that spatial measures did in fact provide valuable contextual information
to help clarify individuals’ alcohol use dynamics, but more at the within- than between-individual
level, particularly in explaining individuals’ probabilities of transitioning from drinking to non-
drinking in comparison with the probabilities of transitioning from non-drinking to drinking.

Despite the promise shown by the application of the proposed model to ILD and GPS data,
there are several limitations to the current work. First, the adolescent alcohol use data were highly
imbalanced, with a large proportion of zero responses; thus, the corresponding classification
performance showed a moderately high-false-negative rate, as indicated by a recall of 0.77 (see
Tables 3 and 4). Certainly, the recall score could be increased by lowering the threshold, but doing
so would lead to lower precision as well. Second, results showed that the proposed model could
not capture heavy drinking well, which might be due to the lack of time-varying covariates from
a prior week that would be predictive of alcohol use at the subsequent week. Third, inclusion of
the AR structure might help better capture instances of heavy drinking, but it was removed from
the empirical data analysis due to convergence issues probably caused by the large proportion
of missingness as well as the insufficient length of nonzero time series. An alternative would be
to fix the AR parameter at 1 to yield a random walk while in the drinking regime. Fourth, no
cross-validation was conducted to prevent over-fitting in the empirical illustration. Several cross-
validation approaches could be considered or adapted for forecasting with longitudinal data (see,
e.g., De Jong 1988, Vehtari et al. 2017, MacCallum et al. 1994, Gelfand et al. 1992, Cudeck and
Browne 1983, Piironen and Vehtari 2017). Finally, the calculation of shared space depended on
an arbitrarily chosen buffer distance (i.e., 1000 meters in this study). A more thorough sensitivity
check to evaluate the robustness of ourmodeling conclusionswith variations in this buffer distance
is warranted.

Several extensions are worth pursuing in future studies. From a substantive perspective, sev-
eral other spatial measures can be derived from the GPS data to facilitate forecasts of alcohol use.
For instance, with home and school addresses, individuals’ distances from homes and schools
may help predict the extent and instances of alcohol use. In addition, spatial and other temporal
(e.g., self-report ecological momentary assessments (EMAs)) data can be more strategically inte-
grated with each other to help pinpoint the roles of some of the contextual factors considered in
this study. For instance, in this study, time spent with twin siblings was defined as the proportion
of instances where the twins’ hourly activity spaces overlapped with each other, but it was not
directly validated whether the twin siblings were actually spending time together at particular time
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points. In this case, drawing information from other sources to pinpoint when and where exactly
individuals were spending time with their family members can help increase the accuracy of the
proposed forecasting approach. Incorporating additional sources of geospatial data to help distin-
guish urban from suburban areas, as well as other between-individual and between-neighborhood
differences in alcohol use tendency may also help improve forecast accuracy.

From a methodological perspective, several modeling extensions are possible and may help
enrich our investigation of adolescent alcohol use dynamics. First, one possibility is to incorporate
missing data models into the current modeling framework to represent the missing mechanisms
associated with alcohol use and covariates. Non-ignorable missingness (Little and Rubin 1987) is
a legitimate concern in the context of our empirical example because adolescents might actively
avoid responding to the EMA survey when they were engaging in drinking-related activities.
In these cases, missingness in the EMA might be meaningfully informed by other passive data
sources, such as GPS data and related spatial measures.We did not pursue suchmissing data mod-
eling possibilities in the present article; however, amore thorough examination of the robustness of
our modeling results to variations in missing data assumptions and models is imperative in future
studies. Second, it should be noted that in the present study, we blocked the data at the weekly level
to yield equally spaced data, which allowed us to fit discrete-time models but inevitably generated
a large proportion of missingness. However, the unequally spaced measurement occasions can be
readily accounted for by fitting a continuous-time model (e.g., a first-order stochastic differential
equation (SDE) model Arminger 1986, Lu et al. 2019, Oravecz et al. 2011) to the original data set.
Parameters in continuous-time models are invariant to changes in the measurement interval and
can be transformed to the corresponding discrete-time parameters according to the time interval
(Voelkle et al. 2012, Kuiper and Ryan 2018, Oud and Jansen 2000).

Third, given the less satisfying forecasts of heavy drinking, we may consider three regimes
—for instance, abstinence, light drinking, and heavy drinking—to explore under what circum-
stances one may be more likely to transition from abstinence to light/heavy drinking, and from
light drinking to heavy drinking, and vice versa. The nonlinear associations (either regime-based
or overall associations) between alcohol use and social contexts would also be an interesting
future direction. Fourth, moving beyond a univariate framework, it is also possible to evaluate
and forecast alcohol use by including reciprocal linkages between twin members via a bivariate
RS-ZIMLP model. We did not pursue this option because of design-related discrepancies in the
measurement windows of some twin pairs’ EMAs, which entailed excessive missingness in the
data when a bivariate RS-ZIMLP was pursued in our model exploration phase. Another com-
plication that needs to be resolved is the potentially large number of regimes that may have to
be included in the bivariate model to accommodate the twin members’ possible asynchronous
transitions into and out of the drinking regime. Fifth, a negative binomial regression model may
be considered as an overdispersed alternative to the Poisson regression model to allow for greater
variability in the data set. Finally, it would be interesting to compare zero-inflated models with
other techniques that could be applied to work around the imbalance issue, such as extensions of
resampling strategies (e.g., synthetic minority oversampling technique (SMOTE); Chawla et al.
2002) and cost-sensitive learning approaches (e.g., Elkan 2001) for time-series forecasting tasks
(see, e.g., Moniz et al. 2017, Cao et al. 2013, Geng and Luo 2019, Roychoudhury et al. 2017).

In conclusion,we presented, evaluated, and demonstrated aBayesian approach for forecasting
intensively measured adolescent alcohol use in the context of a novel Bayesian RS-ZIMLPmodel.
Forecasting with ILD is very much an emerging area of research in social and behavioral sciences,
complicated further by challenges to perform timelymodel formulation, estimation, inference, and
parameter updates in a manner that is helpful for real-world prevention and intervention purposes.
As a field, we are far from accomplishing such efficacious forecasts. Nevertheless, having useful
models and approaches for performing and evaluating forecast results is a much needed first step
toward achieving these long-term goals.
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