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Abstract. Global Positioning System (GPS) data have become one of
the routine data streams collected by wearable devices, cell phones, and
social media platforms in this digital age. Such data provide research op-
portunities in that they may provide contextual information to elucidate
where, when, and why individuals engage in and sustain particular be-
havioral patterns. However, raw GPS data consisting of densely sampled
time series of latitude and longitude coordinate pairs do not readily con-
vey meaningful information concerning intra-individual dynamics and
inter-individual differences; substantial data processing is required. Raw
GPS data need to be integrated into a Geographic Information System
(GIS) and analyzed, from which the mobility and activity patterns of in-
dividuals can be derived, a process that is unfamiliar to many behavioral
scientists. In this tutorial article, we introduced GPS2space, a free and
open-source Python library that we developed to facilitate the processing
of GPS data, integration with GIS to derive distances from landmarks
of interest, as well as extraction of two spatial features: activity space
of individuals and shared space between individuals, such as members
of the same family. We demonstrated functions available in the library
using data from the Colorado Online Twin Study to explore seasonal
and age-related changes in individuals’ activity space and twin siblings’
shared space, as well as gender, zygosity and baseline age-related differ-
ences in their initial levels and/or changes over time. We concluded with
discussions of other potential usages, caveats, and future developments
of GPS2space.

Keywords: spatial measure · twins · behavior genetics · latent growth
curve model · Python.

1 Introduction

Spatial analysis is used to explain locations, attributes, and relationships of fea-
tures in spatial data and has increasingly become a subject of interest in many



social and behavioral science disciplines including psychology, sociology, demog-
raphy, and environmental science (Chi & Zhu, 2019; Sui & Goodchild, 2011).
The past three decades have witnessed the emergence and substantial growth of
using spatial analysis to investigate environmental effects on behavioral changes
and population dynamics. Many earlier analyses of spatial and mobility patterns
were based mostly on self-reports, surveys, or administrative data (Chi & Mar-
couiller, 2013; Kestens et al., 2012; Vallée, Cadot, Roustit, Parizot, & Chauvin,
2011). For example, participants were usually asked to draw a map displaying
their daily mobility patterns or provide locations they frequently visited in their
daily routines. Recent advances in mobile technology tools (e.g., smartphones,
wearable sensors) now allow researchers to collect physical location data in real-
time over very short intervals (e.g., across seconds or minutes) (Kerr, Duncan, &
Schipperjin, 2011; Kestens, Thierry, Shareck, Steinmetz-Wood, & Chaix, 2018;
Russell, Almeida, & Maggs, 2017). Such intensive and continuous location data
streams provide contextual information to elucidate the context in which (e.g.,
where, when, and why) individuals engage in and sustain particular behavioral
and lifestyle patterns. However, the central focus of many studies in the social
and behavioral sciences not only examines individuals’ short-term spatial activ-
ities over hours or days, but also those that may extend over weeks, months,
or even years, as well as across large populations. In such scenarios, as in the
case of the Colorado Online Twin Study (CoTwins) used for demonstration
in this study, the sheer quantity and density of the longitudinal Global Posi-
tioning System (GPS) data (approximately 6.65 million points from June 2016
to December 2018) make the spatial measure extraction via conventional and
non-programmable spatial analysis tools highly impractical, inefficient, and ir-
reproducible. In this article, we introduced GPS2space, a user-friendly Python
package that can be used to facilitate and automate the processes of spatial data
building, activity and shared space measure extraction, and fast distance query.

Myriad spatial and aspatial measures can be extracted from raw physical
location data or social network data. One measure that has been found to be
a useful lifestyle indicator is activity space, which has been used in studies of
obesity, substance use, and mental health. Generally, these studies treat activ-
ity space as the space within which an individual engages in routine activities.
This space measure may be quantified subjectively via individuals’ self-reports
(Buchowski, Townsend, Chen, Acra, & Sun, 1999), or objectively via location
data (N. C. Lee et al., 2016). For example, using a representative sample from
the Paris metropolitan area of France, Vallée et al. (2011) explored the relation-
ship between depression and activity space as measured by individuals’ daily
activities. They found that depression was related to limited activity space and
neighborhood characteristics such as deprivation status. Mason et al. (2010)
constructed activity space from 301 Philadelphia adolescents’ place-based social
networks, and found that adolescents’ substance use depended on their activity
space, as moderated by participants’ age and gender.

Another measure is shared space, which can be spatial or aspatial depending
on disciplines and research questions. From a social science perspective, shared
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space refers to the socio-psychological or physical space within which individuals
share a common identity and social belonging (Cleaveland & Kelly, 2008; Fine,
2012), or a common physical area. Studies have shown that shared space, such as
coworking space shared by independent professionals, can provide social support
(Gerdenitsch, Scheel, Andorfer, & Korunka, 2016). Shared space also increases
neighborhood satisfaction and sense of community (Kearney, 2006).

In this study, we define an individual’s activity space as the area of the mini-
mum bounding geometry consisting of routine locations visited by the individual
over a specific period of time (i.e., daily, weekly, or monthly). Accordingly, we
define shared space as the overlapping areas of two individuals’ activity spaces.
Activity space depends on the spatial distributions of the geolocations: geoloca-
tions spanning larger areas and broader geographical regions would give rise to
higher values of activity space. In contrast, geolocations that are concentrated
around certain places such as home and working place would yield smaller ac-
tivity space. Shared space is not necessarily linearly related to activity space
because the latter is determined by the extent to which two individuals’ activity
spaces overlap with each other, in other words, how much they share the same
area within their activity spaces.

Despite the richness of information available in location data, the mapping
of raw data consisting of latitude and longitude coordinate pairs to landmarks of
inferential interest requires reverse geocoding. Reverse geocoding is the process
of converting machine-readable GPS coordinates into location information for
geoprocessing, such as the nearest distance query, as well as specialized spatial
feature extraction procedures (Yin et al., 2020). These procedures are typically
implemented via specialized spatial software that may not be familiar or acces-
sible to many social and behavioral scientists (McCormick, Lee, Cesare, Shojaie,
& Spiro, 2017; Shelton, 2017; Shelton, Poorthuis, & Zook, 2015). Commercial
software such as ArcGIS, TransCAD, and MapInfo (Drummond & French, 2008;
Murray, Xu, Wang, & Church, 2019) are available and relatively easy to use.
However, licensing restrictions may prevent broad dissemination of methodolog-
ical advances and reproducibility of analytic results, and these programs are not
readily available on High Performance Computing (HPC) platforms used to pro-
cess data and perform large-scale analyses. ArcGIS and an open-source software,
QGIS, are programmable, but their programming environments are not well de-
veloped. In contrast, R is an open-source programmable statistical language
whose usage has been increasing in social and environmental sciences (Bivand,
2006). However, R poses known challenges in handling very large data sets, and
often performs less satisfactorily in terms of memory management and computa-
tional speed (Patil, 2016). Taking into consideration computational speed, ease
of usage, and open-source availability, we developed GPS2space in Python, a
popular open-source programming language among researchers and data scien-
tists.

The objectives of this tutorial are to introduce and demonstrate the use of
GPS2space, a new, open-source Python library that we created to facilitate the
construction of spatial data, simplify extraction of mobility-related measures
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such as activity space and shared space, and boost the nearest distance query
for big data. GPS2space builds upon existing functions and includes all the nec-
essary, tunable parameters as arguments for generating spatial measures in a
straightforward and well-documented package that can be readily implemented
by newer users. We used the terms library, package, and toolbox interchange-
ably throughout the article, as these terms all refer to reusable chunks of code
but are used differently in different conventions. Likewise, we used the terms
methods and functions interchangeably, in that they both refer to snippets of a
library/package/toolbox that are used for specific purposes.

The remainder of the article proceeds as follows. First, we briefly introduce
commonly used Python libraries for managing and analyzing GPS data and
highlight the contributions of GPS2space. Then, we illustrate the utility of the
GSP2space library using the CoTwins data to extract the twin siblings’ activity
space and shared space. These measures are used to address questions related to
seasonal, age-based, gender, and zygosity effects in shaping individuals’ activity
space and shared space. Finally, we conclude with discussions on other potential
usages, caveats, and future developments of GPS2space.

2 Contributions of GPS2space Relative to Other
Commonly Used Spatial Python Packages

Like many data analysis procedures, geospatial analyses involve data reading
and writing, data managing and processing, and visualization. Beyond that,
geospatial analyses also deal with spatial projection and operation, Exploratory
Spatial Data Analysis (ESDA), and spatial modeling. There are existing Python
libraries that focus on certain specific functions useful for geospatial analysis –
a brief overview is provided next.

Geospatial Data Abstraction Library (GDAL/OGR contributors, 2020) spe-
cializes in reading and writing raster and vector data, which are the two com-
monly used data types in GIS. It supports 168 raster data formats and 99 vector
data formats at the time of writing (October 2020). Fiona (Gillies et al., 2011)
and Rasterio (Gillies et al., 2013), two other popular libraries in Python, focus on
reading, writing, and manipulating vector and raster data, respectively. Pyproj
exclusively focuses on cartographic projections and coordinate transformations
(Crickard, Toms, & Rees, 2018). Shapely specializes in spatial operations such
as distance query and intersecting and overlapping analyses (Gillies et al., 2007).
Python Spatial Analysis Library (PySAL) is the most commonly used library
in conducting ESDA and spatial modeling (Rey, 2019; Rey & Anselin, 2007).
GeoPandas, on the other hand, combines Pandas, a widely used Python data
analysis library, and GIS science, providing a wide array of geospatial functions
such as spatial operation, spatial projection transformation, and visualization
(Jordahl, 2014). These packages are often used together to conduct a series of
data managing, manipulation, visualization, and modeling tasks. For example,
GeoPandas relies on Fiona to read and write spatial data and PyProj to perform
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spatial projection transformations. Rasterio also uses PyProj for its projection
functionalities.

The packages reviewed thus far do have limitations, especially for novices
who do not have strong background in programming and GIS. For example,
Shapely does not provide options for coordinate system transformations, so the
original units of distance and area measures are usually degrees, which may not
be intuitive for non-specialist audiences. GeoPandas incorporates many useful
geoprocessing methods and spatial analysis techniques and provides foundational
functions for such spatial operations; however, it assumes users have GIS and
programming background to perform the analyses. For example, to calculate the
area of a polygon from GPS data with latitude and longitude coordinate pairs
using GeoPandas, a researcher has to first build a spatial data set, project it to
an appropriate coordinate reference system (CRS), and then calculate the area.

Even though we did not provide an exhaustive list of all the Python packages
that can perform geospatial manipulation and analysis, we highlighted that al-
most all of these packages are tailored for experts with considerable spatial data
handling and GIS experience, and require function customizations in multiple
steps. For novices such multi-step data pre-processing and function customiza-
tion processes can be challenging and error-prone. In addition, none of the above
packages provides immediately available functions for constructing activity space
and shared space.

In this article, we introduced GPS2space with the aim to facilitate and au-
tomate, whenever possible, the processes of spatial data building, activity and
shared space measure extraction, and distance query. Specifically, GPS2space
has three functionalities: (1) building unprojected spatial data from geoloca-
tions with latitude and longitude coordinate pairs using the geodf function; (2)
constructing buffer- and convex hull-based activity space and shared space at
different timescales using the space function; and (3) performing nearest distance
query using the dist function, which incorporates cKDTree 1 and spatial index-
ing and R-Tree 2 algorithms to decrease execution time. GPS2space provides
an easily replicable and open-source solution to building spatial data directly
from latitude and longitude coordinate pairs. It also provides default parameter-
izations suited for many longitudinal spatial data streams that can be used to
simplify and reduce the specification steps needed for extraction of activity- and
shared-space-related and distance measures included in the package. GPS2space
enables transparent and easily replicable ways to change these default options for
experienced GIS scientists and programmers to perform custom specifications.

1 cKDTree is a function from SciPy, a commonly used library for scientific computing
in Python. cKDTree is used to rapidly look up the nearest neighbors of any point
and can dramatically reduce the time needed for such processes.

2 GeoPandas incorporated spatial indexing using the R-tree algorithm to boost the
performance of spatial queries. R-tree is a tree-like data structure that groups nearby
objects together along with their minimum bounding box. In this tree-like data
structure, spatial queries such as finding the nearest neighbor does not have to travel
through all geometries, dramatically increasing performance, especially for two data
sets with different bounding boxes.
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These spatial measures provide additional contextual information and expand
the usages of GPS data. In sum, GPS2space provides an open-source tool to con-
solidate, simplify, and automate data processing and spatial measure extraction
from large (e.g., intensive longitudinal) GPS data sets. In this way, replicability
and reproducibility of results can be greatly enhanced – for veteran and novice
researchers alike.

3 Motivating Data: The CoTwins Study

We used data from the CoTwins study to illustrate the utility of GPS2space
and demonstrate how spatial activity measures can shed light on individual and
dyadic activity patterns between twin siblings. Twin studies have the advantage
of disentangling genetic and environmental factors for the trait of interest (New-
man, Freeman, & Holzinger, 1937). Despite the increasing application of spatial
thinking and spatial data in social and behavioral research, few twin studies have
been designed to collect twins’ location data, which often convey valuable infor-
mation concerning social contexts. For instance, shared activity space and time
spent with each other reflect opportunities for relationship bonding, and may
thus convey the extent of emotional closeness between two individuals (Ben-Ari
& Lavee, 2007). Furthermore, with twins’ location data, it would be interest-
ing to investigate how monozygotic (MZ; identical) twins and dizygotic (DZ;
fraternal) twins differ in their shared activity space.

The CoTwins study comprises data on substance use among 670 twins. Twins
were initially recruited at ages 14 to 17 and followed from 2015 to 2018. Through-
out 2016 to 2018, the twins’ geolocations were recorded and reported via their
GPS enabled smartphones. iOS devices used the built-in significant-change lo-
cation service to record and report geolocations whenever they detected a sig-
nificant position change of 500 meters or more. Android devices recorded and
reported geolocations every five minutes as long as the device was in use. Over
the course of the study, the twins’ spatial footprints covered locations within
and outside of the United States. In this article, we only used locations in the
contiguous United States, which includes the District of Columbia but excludes
Alaska and Hawaii.

Figure 1 shows the spatial distribution of the twins’ footprints in 2016, 2017,
and 2018 across Colorado and the contiguous United States. The CoTwins study
began collecting locations in June 2016 so the figure shows fewer data points
in 2016. Throughout 2017 and 2018, the twins set foot in almost every state
of the contiguous United States and showed a consistent pattern of footprints
concentrated in Colorado and all over parts of the contiguous US, with North
Dakota, Arkansas, and Alabama as the least visited states. In Colorado in 2017
and 2018 they showed consistent mobility patterns with geolocations clustered
around metropolitan areas such as Denver and Colorado Springs and along major
roads within the state. The border counties in Colorado such as Moffat, Rio
Blanco, Yuma, Cheyenne, Kiowa, and Baca were rarely visited. The code for
Figure 1 can be found in Supplementary Material.
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Figure 1. Distribution of geolocations in the contiguous United States and Colorado
across 2016, 2017, and 2018 in the CoTwins study.

Many related works have demonstrated the spatial aspects of activity space
and shared space and their impact on human behaviors such as substance use
(Mason et al., 2010) and social support in a specific setting such as working space
(Gerdenitsch et al., 2016); however, the temporal variations of such spatial mea-
sures and interindividual differences therein have not been thoroughly explored.
Hence, we employed passive sensor (GPS) data to investigate whether meaning-
ful seasonal, time- (e.g., weekend), and age-based variations, as well as between-
individual differences in these intra-individual changes, could be meaningfully
inferred from individuals’ spatial measures as extracted using GPS2space. In
particular, we examined (1) whether there were seasonal effects in twins’ activ-
ity space/shared space; (2) whether there were weekend effects in twins’ activity
space/shared space; (3) inter-individual differences in initial levels of activity
space/shared space, and possible associations with gender, baseline age, and twin
type (MZ vs. DZ twins); and (4) age-related changes in activity space/shared
space, and possible roles of gender as correlates of interindividual differences in
these age-based changes.

4 Example I: Buffer- and Convex hull-based Activity
Space and Shared Space

As previously defined, activity space refers to the area of individuals’ routine lo-
cations over a specific time period. Practically, ellipses, convex hulls, and density
kernels are often used to construct the activity space (Huang & Wong, 2016).
The GPS2space library currently includes two commonly used methods for con-
structing activity space: the buffer method and the convex hull method. The
buffer method uses a user-specified buffer distance as the radius in determining
activity space, while the convex hull method lines up the outermost points to
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a minimum bounding geometry (J. H. Lee, Davis, Yoon, & Goulias, 2016) to
represent activity space. Both buffer- and convex hull-based activity space ap-
proaches are associated with their own pros and cons. For buffer-based activity
space, users have to specify a buffer distance to group and dissolve points into
polygons to enable extraction of activity space. The choice of buffer distance can
be arbitrary and application-specific, and it affects the sizes of activity space and
shared space. However, this approach provides interpretable mobility estimates
even with only one data point. In this case, activity space for that one data
point is simply the area of the circle whose radius is the buffer distance. Impor-
tantly, it is less sensitive to extreme geolocations that are beyond the clusters
of geolocation. Convex hull-based activity space does not require any arbitrary
parameter. However, convex hull-based activity space computations require at
least three non-collinear points to form an enclosed convex hull. In addition,
convex hull-based activity space is sensitive to extreme geolocations, giving ex-
treme activity space values in the presence of outliers. For example, instances
where individuals travel via cars or flights from one main location to another
would be outliers. The convex hull method would yield extreme activity space
values in trying to construct a convex hull containing all the data points prior
to, during, and after such travels, whereas the buffer-based method would use
the user-specified buffer value to “group” the data points into clusters of points
and compute activity and other spatial activity measures accordingly. We rec-
ommend that users consider their respective applications and contexts in detail
when choosing between these two methods.

To illustrate how buffer- and convex hull-based activity space and shared
space are obtained from raw GPS data with latitude and longitude coordinate
pairs, we used one randomly selected twin pair, denoted herein as TwinX, and
their geolocations on May 12, 2017. For buffer-based activity space, we used a
buffer distance of 1000 meters based on common choices of buffer distance in
other published studies (Perchoux, Chaix, Brondeel, & Kestens, 2016; Stewart et
al., 2015). The process of computing activity and shared spaces can be grouped
largely into 3 steps. We described each step and provided the associated code as
organized by these steps.

Step 1: Conversion of raw GPS data into spatial data.

To perform spatial operations, we need to first convert raw GPS data with
latitude and longitude coordinate pairs to spatial data using the df to gdf func-
tion in the GPS2space library. The df to gdf function takes three parameters:
the first one is the Pandas dataframe 3 that contains GPS data with geolocation
information as represented by latitude and longitude coordinate pairs; the sec-
ond one is the column name of the longitude information; the third one is the
column name of the latitude information. The df to gdf function returns an un-

3 Pandas is a commonly used library for data manipulation analysis in Python. A
Pandas dataframe is a 2-dimensional data structure with rows representing obser-
vations and columns representing variables. A column can have different data types
in a Pandas dataframe.
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projected GeoPandas dataframe 4 in the World Geodetic System 84 (WGS84).
The following code imports the required libraries for the process, then reads
in latitude and longitude coordinate pairs stored in two csv files comprising
the two twin members’ respective data, TwinXa 512.csv and TwinXb 512.csv,
and finally converts the non-spatial dataframe to spatial data using the df to gdf
function. One important note is that users must pass the longitude column name
to x and the latitude column name to y.

# Import required libraries for the analyses.

import pandas as pd

import geopandas as gpd

from gps2space import geodf , space , dist

# Read TwinXa_512 and TwinXb_512 as Pandas dataframes.

df_twinXa_512 = pd.read_csv (‘./data/TwinXa_512.csv’)

df_twinXb_512 = pd.read_csv (‘./data/TwinXb_512.csv’)

# Convert Pandas dataframes to GeoPandas dataframes.

gdf_twinXa_512 = geodf.df_to_gdf(df_twinXa_512 , x=‘

longitude ’, y=‘latitude ’)

gdf_twinXb_512 = geodf.df_to_gdf(df_twinXb_512 , x=‘

longitude ’, y=‘latitude ’)

Step 2: Spatial projection and spatial measure extraction of activity space.

After successful data conversion, the next step is to project the spatial data
and calculate buffer- and convex hull-based activity space using the space.buffer space
and space.convex space functions, respectively. The buffer space takes four pa-
rameters: the first is the unprojected GeoPandas dataframe; the second is a user-
defined buffer distance dist, where the default value is 0; the third is dissolve,
the user-specified level of timescale at which the geolocations are aggregated to
form polygons, where the default value is “week”; the fourth is proj, the user-
specified EPSG identifier 5 based on the selected spatial data for projection.
The default value for proj is 2163 (US National Atlas Equal Area projection),
a commonly used projection for the US. The buffer space function returns a
GeoPandas dataframe with a “buff area” column representing the buffer-based
activity space. The proj parameter specifies the unit for activity space, shared
space, and buffer distance in the buffer space function. For instance, the unit of
EPSG 2163 is meter, so the unit for dist is meter; accordingly, the unit for activ-
ity space and shared space is square meter. We recommend that users choose a
meter-based projection system because it provides more intuitive measurement

4 A GeoPandas dataframe is an extension of Pandas dataframe with a “geometry”
column storing geolocation information.

5 EPSG identifiers are codes representing different spatial reference systems that can
be used to project, reproject, and transform between different spatial reference sys-
tems. For example, the EPSG: 4326 is the default spatial reference system used by
GPS, the EPSG: 3857 is used by Google Map and OpenStreetMap.
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units than a degree-based projection system. 6 As mentioned above, the buffer
distance in the buffer space function is an application-specific parameter, users
can refer to Browning and Lee (2017), K. Lee and Kwan (2019), Sugiyama, Kub-
ota, Sugiyama, Cole, and Owen (2019), and Prins et al. (2014) for discussion on
selecting buffer distances and their impacts on the study involved.

The convex space takes three parameters: the first is the unprojected GeoPan-
das dataframe; the second is group, the level of timescale at which users want
to group geolocations to form polygons, where the default value is “week”; the
third is the EPSG identifier, where the default value is 2163. The convex space
function returns a GeoPandas dataframe with a “convx area” column represent-
ing the convex hull-based activity space. When constructing activity space, the
timescale should either be one of the variables in the dataframe, or it can be
inferred and included as a variable in the dataframe from the timestamp when
the geolocations are recorded. In the following example, we constructed TwinXa
and TwinXb’s daily activity space on May 12, 2017, and the variable “day” is
inferred from the twin pairs’ timestamps ranging from 5/12/2017 at 07:25 to
5/12/2017 at 20:10.

# Project spatial data.

gdf_twinXa_512 = gdf_twinXa_512.to_crs(‘epsg :2163’)

gdf_twinXb_512 = gdf_twinXb_512.to_crs(‘epsg :2163’)

# Buffer - and convex hull -based activity space.

buff_twinXa_512 = space.buffer_space(gdf_twinXa_512 ,

dist =1000, dissolve=‘day’, proj =2163)

buff_twinXb_512 = space.buffer_space(gdf_twinXb_512 ,

dist =1000, dissolve=‘day’, proj =2163)

convex_twinXa_512 = space.convex_space(gdf_twinXa_512 ,

group=‘day’, proj =2163)

convex_twinXb_512 = space.convex_space(gdf_twinXb_512 ,

group=‘day’, proj =2163)

Step 3: Extraction of shared space by overlaying activity space features.
Once we have the activity space, we can utilize the overlay function from

GeoPandas to calculate shared space by overlaying and intersecting the activ-
ity spaces of two individuals. For instance, in the following code example, we
overlaid the buffer- and convex hull-based activity space. We specified “intersec-
tion” for the how parameter to extract the intersection area between the twins’
activity space. We then invoked the area function to obtain a column named
“share space,” representing the areas of the twins’ shared space. A loop to it-
erate over multiple activity space features to obtain shared space between one
another is provided in Supplementary Material.

# Calculate shared space from activity space.

buff_share = gpd.overlay(buff_twinXa_512 ,

buff_twinXb_512 , how=‘intersection ’)

6 For the unit of different projection systems, see https://epsg.io/.
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buff_share[‘share_space ’] = buff_share[‘geometry ’].area

convex_share = gpd.overlay(convex_twinXa_512 ,

convex_twinXb_512 , how=‘intersection ’)

convex_share[‘share_space ’] = convex_share[‘geometry ’].

area

Figure 2 shows the buffer- and convex hull-based activity space and shared
space for TwinX on May 12, 2017. The buffer-based approach using 1000 meters
as buffer distance gives an activity space of 10.32 and 12.54 square miles 7 for
TwinXa and TwinXb, and a shared space of 8.08 square miles between them.
The convex hull-based approach produces an activity space of 8.99 and 11.08
square miles for each individual of TwinX and a shared space of 8.48 square
miles between them. The code for Figure 2 can be found in Supplementary
Material.

Figure 2. (a) Buffer-based activity space and shared space for TwinX on May 12, 2017
in Colorado. (b) Convex hull-based activity space and shared space for TwinX on May
12, 2017 in Colorado.

7 For illustration purposes, we converted area measurement in square meters to square
miles.
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5 Example II. The Nearest Distance Query

The nearest distance measure is a useful indicator of accessibility of infrastruc-
tures and places that would influence behavioral and socioeconomic outcomes.
For example, research has shown that the distance to the ballot drop box influ-
ences voters’ turnout (McGuire, O’Brien, Baird, Corbett, & Collingwood, 2020),
and access to highways affects population distribution (Chi, 2010). However, the
nearest distance query can be computationally demanding and time-consuming,
especially for processing data in large volumes. To boost the nearest distance
query, the dist function in the GPS2space library incorporates two types of
spatial indices to rapidly look up the nearest neighbor and calculate the dis-
tance. When the geometries of target features are points, dist to point in the
dist function utilizes the cKDTree from SciPy to search for nearest neighbors;
when the geometries of target features are polygons, dist to poly in the dist
function utilizes the R-Tree from Geopandas to search for nearest neighbors.
Both cKDTree and R-Tree algorithms create tree-like data structures from the
Geopandas dataframe which enable fast nearest neighbor searching, therefore
working efficiently with data sets in large volumes.

We used TwinXa’s geolocations on May 12, 2017 to demonstrate the utility
of the dist function and calculated the distance from each unique location to its
nearest supermarket (represented as points) and park (represented as polygons)
in Colorado. The supermarket and park data were obtained from OpenStreetMap
(OSM). The OSM started in 2004 and its main goal is to collect and provide free
access to geospatial data. The initial focus was on transportation infrastructure
(streets, highways, railways, etc.), but data collection has expanded to multiple
points of interest, such as buildings and community landmarks. Since most com-
mercial data sources are expensive and have data sharing restrictions, OSM has
quickly become a popular data source for geospatial-related research.

We downloaded and compiled the OSM data from Geofabrik 8, a Germany-
based company specializing in processing and reorganizing free geodata created
by projects like OSM. There are some concerns, however, about the quality of
OSM data. For example, studies have shown that there were some disparities
in data quality between urban/densely populated areas and rural/sparsely pop-
ulated areas in OSM (Barron, Neis, & Zipf, 2014). In this study we compared
OSM data with a high quality commercial data source called Infogroup Business
Dataset, which contains more than 15 million geocoded business locations in the
US. We found that the OSM data provided solid coverage when it came to major
retail chains and good positional accuracy for corresponding locations. For ex-
ample, comparing Infogroup and OSM data for the major Colorado supermarket
chain “Safeway,” 94% of the Safeway locations contained in the OSM data were
also found in Infogroup. We also found similar results for two other major retail
chains – “King Soopers” and “Whole Foods.”

The dist to point function takes three parameters: the first one is the source
GeoPandas dataframe; the second one is the target GeoPandas dataframe; and

8 See https://www.geofabrik.de/geofabrik/geofabrik.html.
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the third one is the EPSG identifier, with a default value of 2163. When dist to point
function is called, the nearest neighbor search is then performed by traversing
the cKDTree created on the spatial points in the target data set, which only
deals with a subset of the points for the distance calculation. As shown in the
following code example, we first constructed the spatial data set for the super-
market data, then we provided three parameters to the dist to point function
for the nearest distance query from the TwinXa to supermarkets. The “dist”
is the outcome GeoPandas dataframe with a “dist2point” column showing the
distance from the source point to its nearest supermarket. All the columns from
both the source and target dataframes are preserved in the outcome dataframe.

# Read market data into Pandas dataframes.

df_market = pd.read_csv (‘./data/market.csv’)

# Convert Pandas dataframes to GeoPandas dataframes.

gdf_market = geodf.df_to_gdf(df_market , x=‘longitude ’,

y=‘latitude ’)

# The nearest distance from twinXa_512 to supermarket.

dist = dist.dist_to_point(gdf_twinXa_512 , gdf_market ,

proj =2163)

The dist to poly function is similar to the dist to point function, except that
the nearest neighbors in the dist to poly function are polygons. The dist to poly
function takes four parameters: the first one is the source GeoPandas dataframe;
the second one is the target GeoPandas dataframe; the third one is the EPSG
identifier, with a default value of 2163; and the fourth one is a search radius in
meters, with a default value of None. If the search radius is not specified, the
dist to poly function employs a brute-force search to find the nearest distance,
and the computation time increases significantly as the number of polygons
grows. If the search radius is specified, R-tree is implemented by creating a
minimum bounding box (MBR) for each target polygon. Instead of calculating
the distance from the source point to every polygon in the target dataframe,
the dist to poly function takes advantage of the R-tree index to only consider
those polygons whose MBRs intersected with the search radius and calculate the
minimum distance. If no polygon is within the search radius, then the dist to poly
function returns a NaN value, a common way to represent missing values in
Python. The dist to poly function works efficiently in calculating the nearest
distance by specifying a search radius, but at the expense of missing values for
points with no neighbors within the search radius. We recommend choosing an
appropriate search radius based on how it can affect specific research designs.

As shown in the following code example, we read the park data in the form
of shapefiles as GeoPandas dataframe, then we provided the parameters to
the dist to poly function for the nearest distance query from the TwinXa to
parks. The “dist no radius” and “dist with radius” are the outcome GeoPan-
das dataframes with a “dist2poly” column showing the distance from the source
point to its nearest park.
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# Read parks as GeoPandas dataframes.

gdf_parks = gpd.read_file (‘./data/parks.shp’)

# The nearest distance without search radius.

dist_no_radius = dist.dist_to_poly (gdf_twinXa_512 ,

gdf_parks , proj =2163)

# The nearest distance with search radius of 5000m.

dist_with_radius = dist.dist_to_poly(gdf_twinXa_512 ,

gdf_parks , proj =2163, search_radius =5000)

The two functions, dist to point and dist to poly, serve to provide distance
measures geared respectively toward places of interest that are adequately rep-
resented as points (typically places covering smaller geographical regions such
that the centroids of their enclosing polygon provide a reasonable representation,
such as supermarkets, transportation terminals, and health facilities) vs. poly-
gons (typically geographically dispersed places of interest or places that require
precise definitions of boundaries, such as parks, water bodies, and administra-
tive boundaries). Results from dist to poly and dist to point do not always agree,
mainly because dist to poly and dist to point treat points within polygons dif-
ferently. To illustrate the differences, we calculated the nearest distance from
TwinX to the nearest park, playground, and supermarket (represented as poly-
gons, search radius not specified) and their centroids (represented as points).
Table 1 shows the results. Overall, the two functions produce similar results
except for differences in minimum distance, where dist to poly may produce 0
values while dist to point rarely produces 0 values. The main reason for the
differences in the minimum distance is that once dist to poly detects the point
is within the polygon it assigns 0 to the nearest distance, while dist to point
calculates the Euclidean distance between the two points and only returns 0 if
the geolocations of the two points are identical. In sum, the distance measure
between dist to point and dist to poly depends on the source data’s relative po-
sition to the target polygon and the shape of the target polygon. The code for
Table 1 can be found in Supplementary Material.
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Table 1. Comparison between the nearest distance from TwinX to
polygon boundary and polygon centroid for parks, playgrounds, and
supermarkets in Colorado

Nearest distance to landmark measure Mean SD Min Median Max

Distance to park (point) 0.57 0.39 0.01 0.46 6.60
Distance to park (polygon) 0.50 0.38 0.00 0.42 6.46
Distance to playground (point) 0.84 0.53 0.01 0.93 8.29
Distance to playground (polygon) 0.83 0.53 0.00 0.92 8.29
Distance to supermarket (point) 1.30 1.06 0.01 0.98 9.36
Distance to supermarket (polygon) 1.27 1.06 0.00 0.95 9.33

Note: The original distance measures were in meters, we converted
them to miles for illustration purposes.

6 Example III. Growth Curve Analysis of Activity and
Shared Spaces

6.1 Data Pre-Processing

Before extracting the daily activity space and shared space for all participants
using the functions presented above, we pre-processed the GPS data following
procedures implemented in the previous study (Li et al., in press). First, we ex-
cluded records with fewer than 20 valid data points within a week because these
unusually low numbers of GPS points lacked sufficient variability. Then we ex-
cluded data points showing atypical travel trajectories as detected by dbscan
(Density-Based Spatial Clustering of Applications with Noise), an R package
that is commonly used to identify clusters and outlying points (Hahsler, Pieken-
brock, & Doran, 2019). Then the daily activity space was calculated using a
buffer distance of 1000 meters and transformed from square meters to square
miles for illustrative purposes. The activity space was then log transformed to
reduce skewness in the data. The log transformed activity space was referred to
hereafter as LAS. For each participant, we focused on the proportion of shared
space, referred to as PSS hereafter and defined as the proportion of one’s daily
activity space that overlapped with his/her twin sibling’s daily activity space.
The distributions of LAS and PSS were shown in Figure 3. The final data set
consisted of 558 participants with baseline ages between 14 and 20 (mean = 17),
followed between 1 to 3 years (mean = 2). 43% of the participants were males.
In terms of twin types, 33% were MZ twins, 41% were DZ twins of the same sex,
and 26% were DZ twins of opposite sex.

6.2 Data Analytic Plans

As mentioned before, we were interested in exploring within-individual changes
of LAS and PSS and inter-individual differences in their initial levels and changes
over time, including both between-individual and between-family differences. At
the within-individual level, we sought to address the seasonal effect (research
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Figure 3. Distributions of (a) log activity spaces (LAS) and (b) proportions of shared
space (PSS) across participants.

question 1), the weekend effect (research question 2), and age-related changes
(research question 4) in LAS and PSS; at the between-individual level, we sought
to explore gender differences in the initial levels and changes of LAS and PSS,
as well as the effect of baseline ages on the initial levels (research questions 3-4);
at the between-family level, we investigated the effect of twin zygosity (MZ vs.
DZ twins) on the initial levels of PSS (research question 3). Therefore, we used
three-level growth curve models (see, e.g., Enders & Tofighi, 2007; Hoffman,
2015) as implemented using the R package, brms (Bürkner, 2017), to study
these temporal changes and levels of nesting within this data set, namely, time
nested within individuals within family. In particular, we used seasonal and
weekend indicators, as well as participants’ ages as within-individual (or so-
called level-1) predictors, gender and baseline age as between-individual (level-
2) predictors, and twin zygosity as a between-family (level-3) predictor when
relevant to address our questions of interest. The R code for model fitting can
be found in Supplementary Material.

We first introduced the model for LAS, as shown below.
Level-1 model:

LASitk = β0ik+β1ikAgeitk+β2Weekendt+β3Summert+β4Fallt+β5Wintert+eitk
(1)

Level-2 model:

β0ik = γ00k + γ01kGenderik + γ02kAgei0k + u0ik (2)

β1ik = γ10k + γ11kGenderik + u1ik (3)
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Level-3 model:

γ00k = δ000 + v0k (4)

γ01k = δ010 + v1k (5)

γ02k = δ020 + v2k (6)

γ10k = δ100 + v3k (7)

γ11k = δ110 + v4k (8)

with,

eitk ∼ N(0, σ2),[
u0ik

u1ik

]
∼ MN(0, T =

[
τ20
τ01 τ21

]
),


v0k
v1k
v2k
v3k

 ∼ MN(0,Φ =


φ2
0

φ01 φ2
1

φ02 φ12 φ2
2

φ03 φ13 φ23 φ2
3

φ04 φ14 φ24 φ34 φ2
4

)
The seasonal effect, weekend effect, and age-based changes in LAS were modeled
in the level-1 model, where LASitk was the LAS of person i in family k on day t,
and Ageitk was the age of person i in family k on day t, centered by subtracting
the baseline age from each age instance so that 0 corresponded to the baseline
age. TheWeekend, Summer, Fall, andWinter variables were dummy-coded, with
1 each representing weekend, summer (June 1 to August 30), fall (September 1
to November 30), and winter (December 1 to February 28 or 29). Based on the
definitions of these variables, β0ik represented person i’s initial LAS at baseline
age on Spring weekdays; β1ik was the effect of age on the LAS for person i; and
βj (j = 2, . . . , 5) represented weekend or seasonal effects, which were not set as
person-specific since we focused on the overall seasonal and weekend effects in
this study. Finally, the level-1 error eitk followed a normal distribution with a
zero mean and a variance of σ2.

In the level-2 model, the level-1 parameters, β0ik and β1ik, were regressed on
a person-specific variable, Genderik (1 = male; -1 = female), to explore gender
differences in the initial levels and age-based changes of LAS. In addition, β0ik

was regressed on the baseline age, Agei0k, centered by subtracting the mean
of baseline ages so that 0 corresponded to the average baseline age. Thus, the
corresponding coefficient γ02k represented the effect of baseline ages on the initial
LAS, and γ00k and γ10k represented the overall initial level and growth rate
of LAS across individuals, respectively, while 2γ01k and 2γ11k represented the
corresponding gender differences, respectively. The level-2 random effects were
denoted as u0ik and u1ik, which described person i’s deviations in the values
of β0ik and β1ik not accounted for by the predictors. Finally, the variance and
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covariance structure of level-2 random effects was defined in T . For instance,
the variance of β0ik, denoted as τ20 , described the extent of between-individual
difference in the initial LAS; the covariance between β0ik and β1ik, denoted as
τ01, described the relationship between initial levels and growth rates of LAS.

The level-3 model was built to capture between-family differences. Specifi-
cally, we would like to investigate whether twins from different families would
have different initial levels and growth rates of LAS and whether the effects of
gender and baseline age on the initial levels and/or growth rates of LAS would
differ across families as well. Note that twin type was not included as a predictor
in the level-3 model because the magnitudes of activity space were not expected
to be significantly different between MZ and DZ twins (although they might be
expected to differ in the degree to which they share space with their siblings,
which was addressed below in the model for PSS). Among parameters in the
level-3 model, δ010 and δ110 were of particular interest because they reflected the
differences between males and females in terms of their average initial levels and
growth rates of LAS, respectively. The level-3 random effects, v0k - v4k, followed
a multivariate normal distribution with zero means and a covariance matrix, Φ,
where the variances, denoted as φ2

0 - φ2
4, captured the extent of between-family

differences in the overall initial LAS, the effects of gender and baseline age on
the initial LAS, the overall growth rate of LAS and gender differences therein,
respectively.

In terms of the model for PSS, some slight modeling adaptations were needed
to capture characteristics of the PSS data. As noted, PSS was defined as the
proportion of one’s activity space that overlapped with his/her twin sibling’s
activity space, thus yielding a value ranging from 0 to 1. The model presented
above, which assumed that the error term followed a normal distribution with
a constant variance, might not be appropriate for the data in this scenario.
However, the beta distribution is known for its flexibility in modeling proportions
because its density can display different shapes as decided by the values of α
and β. The beta density can be expressed as:

f(α, β) =
Γ (α+ β)

Γ (α)Γ (β)
yα−1(1− y)β−1, 0 < y < 1, α > 0, β > 0 (9)

Thus, in the generalized growth curve model with PSS as the dependent variable,
PSS was specified to conform to a beta distribution. Consistent with the beta
regression specification proposed by Ferrari and Cribari-Neto (2004), which is
similar to that of the well-known class of generalized linear models (McCullagh
& Nelder, 1989), we defined µ = α/(α + β) and ϕ = α + β, then E(y) = µ
and V ar(y) = µ(1 − µ)/(1 + ϕ), where µ was the mean and ϕ was called the
precision parameter. In our case, we assumed that the PSS, PSSitk, followed
a beta distribution with person-specific means (i.e., E(PSSitk) = µitk). Then
we implemented a logit transformation of µitk and built a three-level growth
curve model on the transformed value (i.e., ηitk). The level-1 model for PSS was
specified as:
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ηitk = log(
µitk

1− µitk
)

= β0ik + β1ikAgeitk + β2Weekendt + β3Summert + β4Fallt + β5Wintert
(10)

where µitk

1−µitk
, denoted below as the odds of PSS, represented the average level

of PSS for individual i in family k at time t relative to not sharing space with
twin siblings, and ηitk = log( µitk

1−µitk
) represented the corresponding log odds.

The independent variables were as summarized in Equation 1. Note that the re-
gression coefficients had different interpretations due to the logit transformation.
For instance, β0ik represented the log-odds of PSS for person i in family k at the
baseline age on Spring weekdays; β1ik was the age-related log-odds ratio, which
means that the odds of PSS would multiply by eβ1ik for every 1-unit increase in
Ageitk. Other parameters (e.g., seasonal and weekend effects) can be interpreted
in a similar way.

The level-2 model for PSS was identical to the level-2 model for LAS (see
Equations 2 - 3), but the regression coefficients had different interpretations for
the reason stated above. For instance, the level-2 intercept, γ00k, represented the
overall log-odds of PSS.

In terms of the level-3 model, we hypothesized that MZ and DZ twins might
have different levels of space sharing to the extent that these spatial measures
reflect genetically influenced behavior/preferences. To evaluate this hypothesis,
we added a predictor, twin type, to Equations 4 - 6 (i.e., the level-3 model for
γ00k, γ01k, and γ02k, which were the coefficients in the level-2 model for β0ik, the
log-odds of initial levels of PSS), to investigate zygosity differences in PSS and
how these differences might affect the effects of gender and baseline age on PSS,
as shown below.

γ00k = δ000 + δ001DZSSk + δ002DZOSk + v0k (11)

γ01k = δ010 + δ011DZSSk + δ012DZOSk + v1k (12)

γ02k = δ020 + δ021DZSSk + δ022DZOSk + v2k (13)

Specifically, we set MZ twins as the reference and added two dummy-coded,
family-specific variables, DZSSk(1 = DZ twins of the same sex) and DZOSk (1
= DZ twins of opposite sex). Thus, δ000, δ001, and δ002 represented the average
log-odds of PSS for MZ twins, DZ twins of the same sex, and DZ twins of the
opposite sex, respectively; δ010, δ011, and δ012 represented the corresponding
gender differences in each twin type group; and δ020, δ021, and δ022 represented
the effect of the baseline age on the average log-odds of PSS in each twin type
group. The models for other level-2 parameters (i.e., γ10k, γ11k) were identical
to the level-3 model for LAS (see Equations 7 - 8).
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6.3 Results

With the brms package, the models were fitted in a Bayesian framework using
Markov chain Monte Carlo (MCMC) methods. Specifically, we ran two chains,
each with 5000 iterations in total and a burn-in of 2000 (discarded) iterations. On
an Intel i5-8350U, 16GB RAM, Windows 10 computer, it took about 40 hours to
run each model. Two diagnostic statistics were used to check the sampling quality
(Gelman et al., 2013): (1) the effective sample size (ESS), which describes how
many posterior draws in the MCMC procedure can be regarded as independent,
and (2) R̂, which describes the ratio of the overall variance of posterior samples
across chains to the within-chain variance. The diagnostic criteria for adequate
sampling and convergence were set as ESS greater than 800 and R̂ below 1.1,
respectively. Results showed that ESS was greater than 800 for most parameters,
except for some random effect standard deviation parameters (e.g., φ1−φ4), for
which the average ESS was about 400, which can be deemed satisfactory. R̂ was
below 1.1 for all parameters in both models.

Table 2. Parameter estimates of the model for LAS from the CoTwins study, 2016-
2018

Parameter Estimate SE 95% CI

Fixed effects
Intercept, δ000 1.81 0.03 [1.76, 1.86]
Gender, δ010 -0.07 0.02 [-0.11, -0.01]
Baseline age, δ020 0.13 0.02 [0.09, 0.16]
Age, δ100 -0.01 0.01 [-0.03, 0.02]
Age*Gender, δ110 0.01 0.01 [-0.01, 0.03]
Weekend, β2 0.06 0.00 [0.05, 0.07]
Summer, β3 0.07 0.00 [0.06, 0.07]
Fall, β4 -0.12 0.00 [-0.13, -0.11]
Winter, β5 -0.08 0.01 [-0.09, -0.07]

Level-2 random effects
Intercept standard deviation, τ0 0.25 0.01 [0.22, 0.28]
Age standard deviation, τ1 0.19 0.01 [0.16, 0.22]
Intercept-Age correlation, τ01/(τ0 ∗ τ1) -0.31 0.08 [-0.46, -0.16]

Level-3 random effects
Intercept standard deviation, φ0 0.37 0.02 [0.33, 0.42]
Age standard deviation, φ3 0.11 0.03 [0.06, 0.16]

Residual standard deviation, σ 0.72 0.00 [0.71, 0.72]

Note: SE = standard errors estimated by standard deviations of the posterior sam-
ples; CI = credible interval. N = 558 participants. The number of time points for
each participant ranged from 3 to 569.
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Table 2 shows the parameter estimates for LAS. In terms of the fixed ef-
fects, weekend and seasonal effects were found in the trajectory of LAS. Specifi-
cally, the participants showed greater LAS values on weekends than on weekdays
(β2 = 0.06, 95% CI = [0.05, 0.07]), which was reasonable since most of the par-
ticipants were supposed to be spending most of their time in school on weekdays,
thus yielding limited activity space. Seasonally, the participants tended to display
greater LAS in summer (β3 = 0.07, 95% CI = [0.06, 0.07]), which was likely due
to summer break as well as the warmer weather. Gender differences were found
in the initial levels of LAS (δ010 = −0.07, 95% CI = [−0.11, −0.01]), although
the upper bound of the 95% credible interval was close to 0. No gender differ-
ences were found in the growth rates of LAS. Finally, older participants tended
to have higher levels of LAS at baseline (δ020 = 0.13, 95% CI = [0.09, 0.16]),
but when it comes to within-individual changes over time, participants’ ages
were not found to be credibly linked to their levels of LAS, as indicated by the
95% credible interval including 0.

In terms of the random effects, we found between-individual and between-
family differences in both initial levels and age-based changes of LAS. These
differences were indicated by the relatively high magnitude of random effect
standard deviations and the credible intervals whose lower bounds were far from
0 (see, τ0, τ1, φ0, and φ3; random effect standard deviation parameters whose
credible intervals were close to 0 were not shown in Table 2). We also found
negative associations between the initial levels and growth rates at the individual
level, indicating that individuals who had higher initial levels of activity space
tended to experience larger decreases in activity space with age.

Table 3 shows the parameter estimates for PSS. In terms of the fixed effects,
weekend and seasonal effects were found in the trajectory of PSS. Specifically,
participants shared more activity space on weekdays than on weekends (β2 =
−0.12, 95% CI = [−0.13, 0.10]). This pattern might be due to the restricted
daily routines on weekdays during which twin siblings in this age range tended
to spend most of their time in school and thus, showed greater PSS. Participants
tended to have the largest PSS in spring, followed by winter, summer, and fall.
In addition, older twins tended to share less activity space at baseline (δ020 =
−0.30, 95% CI = [−0.42, −0.18]), and when it comes to within-individual
changes over time, in contrast to the lack of age-related changes in LAS, PSS was
found to decrease as twins grew older (δ100 = −0.38, 95% CI = [−0.44, −0.31]).
Note that a small portion of twins were in the transition from high school to
college, so the reduction in PSS might also reflect some of the inevitable life
transitions that occur with age, such as attending colleges or working at different
geographical locations. In terms of zygosity differences, both DZ twins of the
same sex and opposite sex were found to share less activity space than MZ
twins (δ001 = −0.29, 95% CI = [−0.49, −0.09]; δ002 = −0.49, 95% CI =
[−0.71, −0.27]), indicating that there might be genetically influenced differences
in PSS. Finally, no gender differences were found in the initial levels and growth
rates of PSS.
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Table 3. Parameter estimates of the model for PSS from the CoTwins study, 2016-
2018

Parameter Estimate SE 95% CI

Fixed effects
Intercept, δ000 0.74 0.08 [0.58, 0.89]
Gender, δ010 0.03 0.08 [-0.12, 0.19]
Baseline age, δ020 -0.30 0.06 [-0.42, -0.18]
Age, δ100 -0.38 0.03 [-0.44, -0.31]
Age*Gender, δ110 -0.04 0.03 [-0.09, 0.01]
DZSS, δ001 -0.29 0.10 [-0.49, -0.09]
DZOS,δ002 -0.49 0.11 [-0.71, -0.27]
DZSS*Gender, δ011 0.04 0.10 [-0.17, 0.24]
DZOS*Gender, δ012 0.08 0.09 [-0.09, 0.25]
DZSS*Baseline age, δ021 -0.13 0.08 [-0.28, 0.02]
DZOS*Baseline age, δ022 -0.04 0.09 [-0.22, 0.13]
Weekend, β2 -0.12 0.01 [-0.13, -0.10]
Summer, β3 -0.31 0.01 [-0.33, -0.29]
Fall, β4 -0.46 0.01 [-0.48, -0.44]
Winter, β5 -0.09 0.01 [-0.11, -0.07]

Level-2 random effects
Intercept standard deviation, τ0 0.34 0.02 [0.30, 0.38]
Age standard deviation, τ1 0.20 0.02 [0.17, 0.24]
Intercept-Age correlation, τ01/(τ0 ∗ τ1) -0.35 0.09 [-0.52, -0.16]

Level-3 random effects
Intercept standard deviation, φ0 0.58 0.11 [1.08, 1.50]
Age standard deviation, φ3 0.40 0.03 [0.32, 0.42]

Precision parameter, ϕ 1.91 0.01 [1.89, 1.92]

Note: SE = standard errors estimated by standard deviations of the posterior sam-
ples; CI = credible interval. N = 484 participants (or 242 pairs of twins). The number
of time points for each participant ranged from 3 to 569.

Results for random effects were similar to those in the LAS model. We found
between-individual and between-family differences in both initial levels and age-
based changes of PSS. We also found negative associations between the initial
levels and growth rates at the individual level, indicating that twins who had
higher initial levels of PSS tended to show more declines in PSS with age. In
other words, the participants’ GPS data suggested that higher physical closeness
at younger ages might not persist as the twins grew older.

Finally, we conducted sensitivity analysis by re-running the analysis with the
full data set (i.e., keeping the records with fewer than 20 valid data points within
a week in the final data set). Results were detailed in Table S1 and Table S2 in
Supplementary Material, which showed only slight differences in the magnitude
of point estimates and standard errors. Both data sets yielded consistent con-
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clusions across all parameters in terms of whether they were credibly different
from zero based on their 95% credible intervals.

7 Discussion

The proliferation of real-time and longitudinal GPS data provides excellent op-
portunities to study human behavior (Osorio-Arjona & Garćıa-Palomares, 2019).
At the same time, the GPS data also pose challenges for consolidating, automat-
ing, and analyzing data that are not only massive in their quantities but also con-
tain spatial features that require expertise in GIS. Commercial software packages
make these studies easier but may have license and reproducibility issues, and
analyses with commercial software cannot be readily deployed to HPC platforms
to facilitate research procedures. In this article, we reviewed and compared ex-
isting commonly used Python libraries for spatial analysis with GPS2space, our
newly developed open-source Python library. GPS2space can build spatial data
from GPS data with latitude and longitude coordinate pairs, construct buffer-
and convex hull-based activity space and shared space, and perform the nearest
distance query from user-specified locations. We demonstrated how to process
spatial data and calculate buffer- and convex hull-based activity space and shared
space, as well as the nearest distance, with code examples. We also discussed the
pros and cons of buffer- and convex hull-based approaches and illustrated differ-
ent scenarios when the two approaches could be appropriately applied. Lastly,
using data from the CoTwins study, we explored intra-individual changes and
between-individual differences in daily activity space and shared space with twin
siblings; and gender, zygosity and baseline age-related differences in their initial
levels and/or changes, using growth curve modeling techniques. We found differ-
ent patterns of seasonal effects in the trajectories of LAS and PSS, less activity
space shared between DZ twins compared with MZ twins, and a decrease of PSS
with increasing age.

There are several limitations to the current data analysis. First, we did not
allow for individual differences in the seasonal effects, so our results only pro-
vided a general description of seasonal patterns of LAS and PSS. In practice,
the seasonal effects might vary across individuals and need to be considered in
model specifications. Second, some other factors might affect individuals’ activ-
ity space, such as time of the year (e.g., school days versus holidays) and weather
(e.g., snow). Similarly, the magnitude of shared space between twin siblings de-
pends on whether they live together or not. These factors need to be included in
the models to better explain the temporal pattern of LAS and PSS as well as in-
dividual differences in these patterns. Finally, in our example, some participants
were assessed for fewer than three years, while typically at least three repeated
measures per individual are required in the growth curve analysis. Therefore,
participants need to be followed for several more years to better investigate age-
related changes at the year level. We may also assess changes of finer granularity
(e.g., at the month level) based on the current data.
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Although we illustrated usage of GPS2space with data from a twin study,
the functions available in this package are applicable to a broad range of studies
that rely on GPS data or geolocation data with latitude and longitude coordi-
nate pairs. For example, GPS2space can be used to quantify individuals’ mobility
patterns using data from social media platforms. Health studies investigating the
spread of contagious diseases can examine individuals’ physical movements and
interaction patterns with other individuals using activity space and shared space
measures as derived from GPS2space. From demographic and sociological per-
spectives, activity space and shared space obtained using GPS2space can provide
important information regarding people’s sense of place, social segregation, and
their impacts on a series of socioeconomic outcomes such as educational attain-
ment and occupational status. In addition, the nearest distance measure from
GPS2space can also be used to examine the effects of accessibility to food and
healthcare providers. Meanwhile, researchers have shown disagreements in mo-
bility or trajectory measures between self-reported data and GPS/Sensor data
(Fillekes, Kim, et al., 2019; Fillekes, Röcke, Katana, & Weibel, 2019). GPS2space
can provide information for researchers to validate and compare mobility or tra-
jectory measures from different data sources.

Many other extensions are possible within GPS2space to circumvent some
of its current limitations. For example, constructing activity space and shared
space involves topological structuring, which can take other forms besides con-
vex hull and buffer, the two methods currently available in GPS2space. Some
researchers use hexagon methods to measure territorial control based on road
data (Tao, Strandow, Findley, Thill, & Walsh, 2016); others also use the concave
hull method to estimate crown volumes of trees from remote sensing data (Yan et
al., 2019). Those approaches are useful and beneficial for certain research ques-
tions but are currently unavailable in GPS2space. To extend the GPS2space, one
could include concave hull, hexagon, and network-based methods in constructing
activity space and parameterize the column name variables for the spatial mea-
sures in GPS2space so that users have control of naming their desired outcomes.

With rapid developments of spatial economics, readily available spatial data
sets, and the computational power of personal computer and cloud computing,
spatial analyses have gained popularity in areas such as social, behavioral, and
environmental studies. We provided a timely open-source solution to work with
GPS data and extract spatial measures with code snippets and empirical exam-
ples using GPS2space. Overall, we have demonstrated that GPS2space can be a
versatile, handy, and extendable tool for researchers to harness the spatialities
of GPS data to investigate a wide array of research questions regarding spatial-
temporal variations of human behavioral changes and environment-population
linkages.
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Supplementary Material

Supplementary material including links to the source code and documenta-
tion of GPS2space, code for replicating the examples, and results from sensi-
tivity analysis are available at https://github.com/shuai-zhou/GPS2space

SupMaterial/blob/main/Supplementary Material V2.pdf. To replicate Ex-
ample I and Example II and explore data structures of the input and output data
sets, please follow the Jupyter Notebook at https://github.com/shuai-zhou/
GPS2space SupMaterial/blob/main/Example%20I%20and%20II.ipynb.
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