Environmental Migration in the United States 1970 – 2020

Shuai Zhou Ph.D. candidate Rural Sociology and Demography (Dual Title)

1

Previous literature and knowledge gap

- Globally, previous studies primarily focused on environmental changes in the developing world
- In the US, studies were centered on rapid-onset environmental disasters. A few studies on slow-onset environmental variabilities used aggregated data at the regional level or crude level

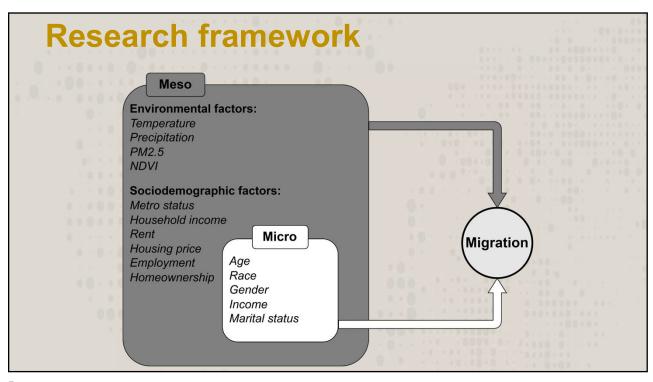
Gutmann et al. (2005): Great Plains region, 1930-1990 Poston et al. (2009): The entire US at the state level, 1995-2000 Feng et al. (2012): Corn belt region, 1970-2009

 There is a knowledge gap regarding the impact of slow-onset environmental variability on migration in developed setting

Research questions

- How do environmental and sociodemographic factors affect the county-level migration rates in the U.S. across rural and urban counties and age groups?
- What are the spatial patterns and dimensions of environmental migration in the U.S.?
- How do individuals respond to slow-onset environmental variability and other individual- and county-level contextual characteristics?

3


Theoretical approaches

· Social-ecological approach

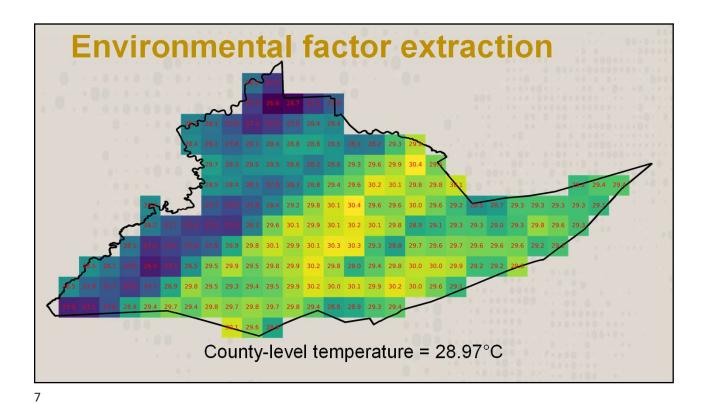
Environmental migration is a function of the elements of a social-ecological system and their interactions within the system

· Sustainable livelihood and adaptation approach

Environmental impacts on migration depend on livelihood changes and adaptative capabilities of the involved population

Migration definitions

Aggregate migration measures


Net migration rates (NMRs)

In-migration rates (IMRs)

Out-migration rates (OMRs)

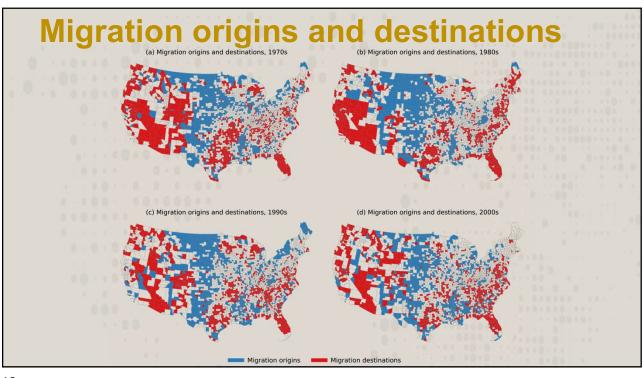
Individual migration measure

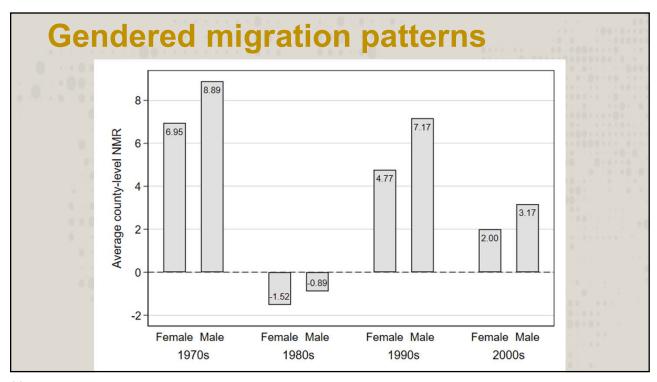
Moves across county boundaries between the ACS years

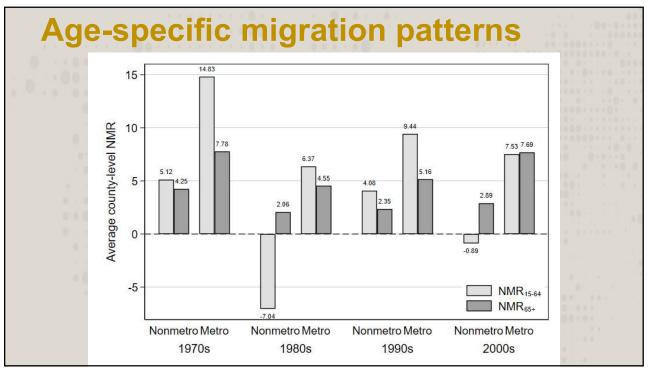
Environmental variability measure

 $Climate \ anomaly_{i,t} = rac{Level_{i,t} - \mu_i^{LR}}{\sigma_i^{LR}}$

 $Level_{i,t}$ = Annual/Decadal average in county i at time t


 μ_i^{LR} = Long-run (previous 30-year) average in county *i*


 σ_i^{LR} = Long-run (previous 30-year) standard deviation in county *i*



Migration in the U.S. 1970 – 2010

C

Findings

- Migration origins are spatial clustered at the Great Plains areas, while migration destinations are spatially clustered at coastal and warm areas
- Males are mobile than females
- The younger generation is more mobile than the elder generation; metro areas are more attractive to the younger generation, while nonmetro areas are more attractive to the elder generation, especially in the 2000s

13

Chapter 1

Environmental Impacts on Migration 1970 – 2010

Research objectives

- Explore environmental impacts on migration
- Investigate heterogeneous environmental effects on age- and place-specific migration patterns

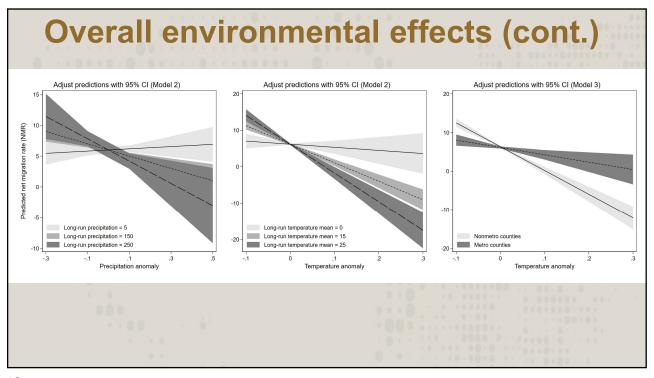
15

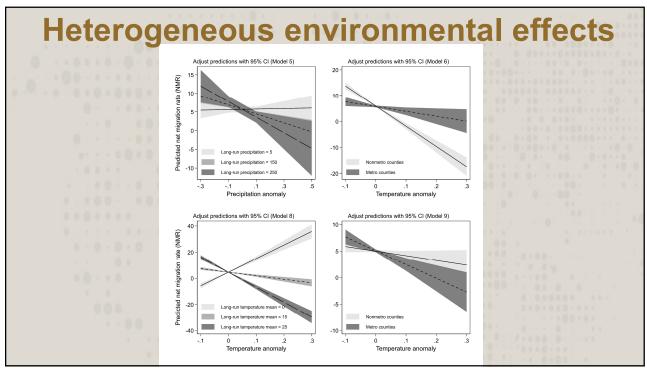
Data and variables

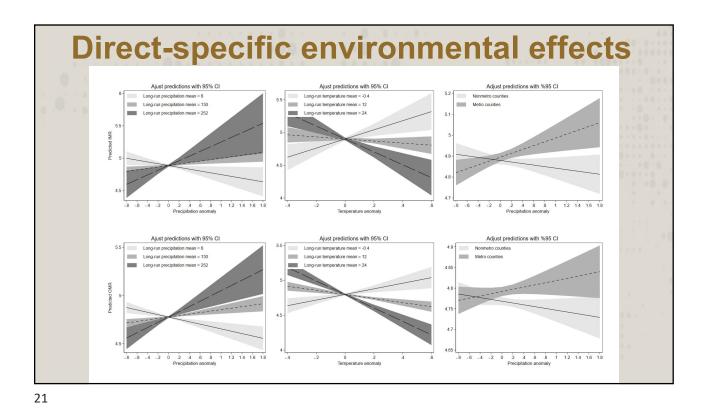
Data source	Year	Variables
NMR	1970–2010	NMRs
IRS	2011–2020	IMRs and OMRs
PRISM	1970–2010	Environmental factors
Census	1970–2010	Sociodemographic factors
USDA	1993	Rural-urban classification

Analytical approach

$$Y_{i,t} = \beta_0 + \beta X_{i,t} + \varepsilon_{i,t}$$


where $Y_{i,t}$ is the migration rates of county i at time t; β_0 is the intercept; $X_{i,t}$ is a matrix of environmental, socioeconomic, and demographic factors; and β is the estimated coefficient. $\varepsilon_{i,t}$ is the error term. County and decade effects are included.


17

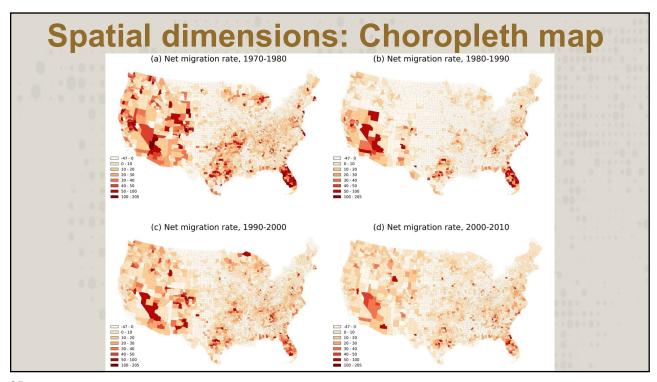

Overall environmental effects

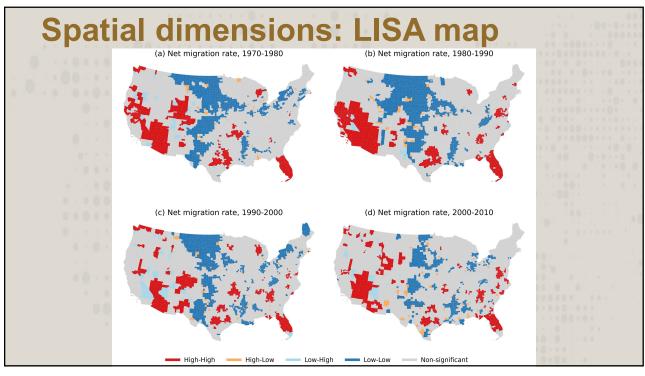
	NMR _{AII}		
	Model 1	Model 2	Model 3
Climatic variables			
Prec anomaly	-4.66***	2.23	-4.15**
Temp anomaly	-49.66***	-8.53	-61.63***
Climatic interactions			
Prec anomaly * Long-run prec average		-0.08*	
Temp anomaly * Long-run temp average		-2.82***	
Prec anomaly * Metro			-3.39
Temp anomaly * Metro			42.60***

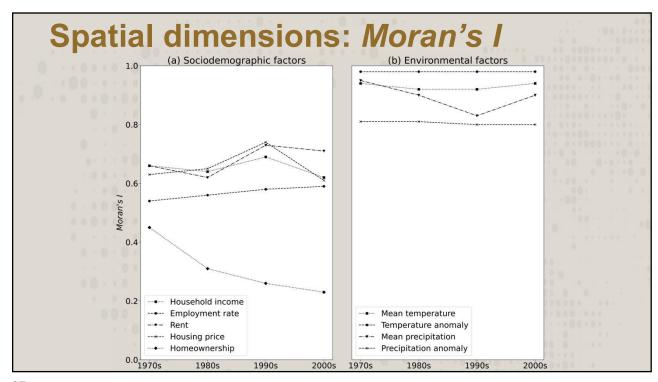
Note: *** p<0.001, ** p<0.01, * p<0.05. Sociodemographic factors and model diagnostics are not show.

Findings

- The elder generation was more responsive to environmental variability than that of the younger generation
- Rural areas were hit harder by environmental variability, with significant exoduses of their younger generations


Chapter 2


Spatial Dimensions of Environmental Migration 1970 – 2010

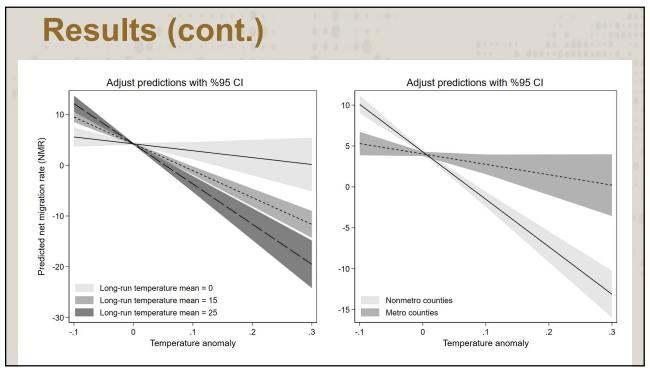

23

Why spatial methods

- Migration is a spatial phenomenon (Johnson et al. 2005; Chi and Zhu 2019)
- Failing to incorporate spatial effects may bias environmental impacts on migration (Saldaña-Zorrilla and Sandberg 2009; Chi and Zhu 2019)

Analytical approach

Spatial lag model (SLM)


$$Y_{it} = X_{it}\beta + \rho W Y_{it} + \varepsilon_{it}$$

Spatial error model (SEM)

$$Y_{it} = X_{it}\beta + u_{it}, u_{it} = \rho W_{u_{it}} + \varepsilon_{it}$$

where Y_{it} is the NMRs of county i at time t; X_{it} is a matrix of environmental and sociodemographic factors; and β is the estimated coefficient; ρ is the spatial lag parameter; W is the spatial weight matrix; ε_{it} and u_{it} are the error terms.

Results			
0	NMR _{AII}		
	OLS	SLM	SEM
Climatic variables	0.		
Prec anomaly	1.395	0.834	2.319
Temp anomaly	-25.721**	-14.638*	-16.076
Climatic interactions			
Prec anomaly * Long-run prec average	-0.059	-0.024	-0.046
Temp anomaly * Long-run temp average	-2.623***	-1.744***	-2.909***
Prec anomaly * Metro	-4.244*	-2.256	-2.023
Temp anomaly * Metro	45.310***	33.003***	28.896***
Note: *** p<0.001, ** p<0.01, * p<0.05. Sociodemographic factor	s and model diag	nostics are not	show.

Findings

The spatial models further confirmed findings from the previous chapter using fixed-effects aspatial models, which strengthened the conclusion that environmental variability affects migration in the U.S. and exerts heterogeneous influences on migration patterns across different age groups and rural-urban dichotomy

31

Chapter 3

Individual Migratory Response to Environmental Variability 2010 – 2020

Why multilevel analysis

- Multivariate method does not efficiently consider the data hierarchy (e.g., individuals nested in households, households nested in higher geographic or administrative units)
- Spatial analysis encounters ecological fallacy, which states that conclusion from aggregate level may not hold at individual level
- Multilevel method is well-suited for data with hierarchies and exploring and disentangling level-specific effects

33

Data and variables

Data source	Variables
ACS Microdata	Migration status and covariates
PRISM	Temperature and precipitation
ACAG	PM2.5
NOAA	NDVI

Two-level logistic regression $Logit(Pr(Y_{ij} = 1))$

$$=\alpha_0+\alpha_{0j}+\alpha_1X_{1ij}+\cdots+\alpha_kX_{kij}+\beta_1Z_{1j}+\cdots+\beta_mZ_{mj}$$

Level-1 (individual) variables:

Age

Personal income

Gender

Marital status

Race

Education

Level-2 (county) variables:

Climate anomalies

Household income

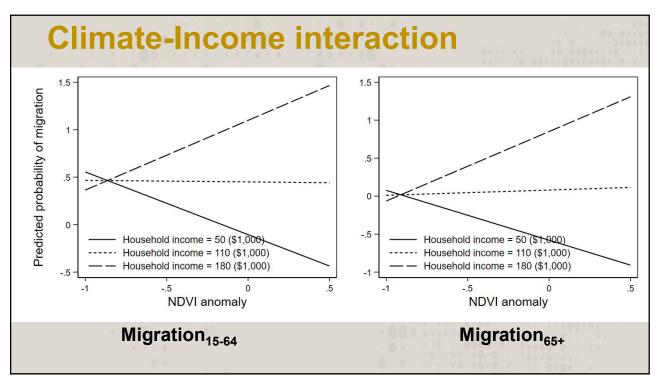
Housing price

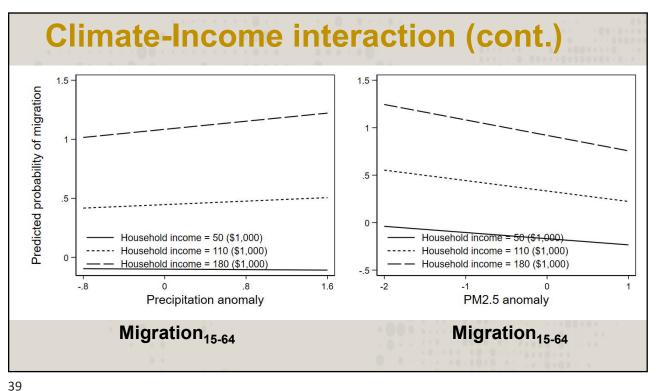
Employment rate

Homeownership

Metro status

Note: Climate anomalies include anomalies in precipitation, temperature, PM2.5, and Normalized Difference Vegetation Index (NDVI).


General models	
Level-1 variables	0 01111011011
Age	-0.010***
Personal income	-0.001***
Gender, Male (Ref. = Female)	0.097***
Marital status, Married (Ref. = Unmarried)	-0.071***
Race, NHB (Ref. = NHW)	-0.209***
Race, Hispanics (Ref. = NHW)	-0.335***
Race, Others (Ref. = NHW)	0.022***
Education, College and above (Ref. = Below college)	0.170***
Level-2 variables	1
Precipitation anomaly	0.017**
Temperature anomaly	0.075***
NDVI anomaly	-0.249***
PM2.5 anomaly	-0.006***
Note: *** p<0.001, ** p<0.01, * p<0.05. NHB=Non-Hispanic Black, NHW=Non-Hispanic Sociodemographic factors and model diagnostics are not show.	anic White. Level-2


Age-specific models

	Mig ₁₅₋₆₄	Mig ₆₅₊
Level-2 variables	0 100	0.401.0
Precipitation anomaly	0.016**	0.033
Temperature anomaly	0.093***	-0.127*
NDVI anomaly	-0.247***	-0.193***
PM2.5 anomaly	-0.092***	-0.001

Note: *** p<0.001, ** p<0.01, * p<0.05. Level-1 variables, Level-2 sociodemographic factors and model diagnostics are not show.

37

Findings

- Being male, non-Hispanic white, and highly educated increased migration probability
- Precipitation and temperature anomalies generally increased migration probability, while PM2.5 and NDVI anomalies decreased migration probability
- The elder generation was responsive to temperature and environmental amenity, while the younger generation preferred places with environmental amenity, economic well-being, and affordable living costs

Conclusion

41

- Environmental variability affected migration in the U.S., even after controlling for covariates that are known to affect migration
- Rural areas were hit harder by environmental variability with increasing depopulation processes, especially the younger generation
- The elder generation was more likely to move to places with warm temperature and rich natural amenities; while the younger generation preferred places coupled with natural amenities, working opportunities, and affordable living costs

